
DECENTRALIZED MODEL PREDICTIVE CONTROL OF SWARMS OF
SPACECRAFT

Daniel Morgan(1), Soon-Jo Chung(2), and Fred Y. Hadaegh(3)

(1) University of Illinois at Urbana-Champaign, 306 Talbot Lab, 104 S. Wright St.,
Urbana, IL 61801, (608) 852-4824, morgan29@illinois.edu

(2) University of Illinois at Urbana-Champaign, 306 Talbot Lab, 104 S. Wright St.,
Urbana, IL 61801, (217) 244-2737, sjchung@illinois.edu

(3) Jet Propulsion Laboratory, M/S 198-326, 4800 Oak Grove Dr., Pasadena, CA
91109, (818) 354-8777, Fred.Y.Hadaegh@jpl.nasa.gov

Abstract: This paper presents a decentralized, model predictive control (MPC) algo-
rithm for the reconfiguration of swarms of spacecraft composed of hundreds to thou-
sands of agents with limited capabilities. This paper develops algorithms for the swarm
reconfiguration which involves transferring spacecraft from one J2-invariant orbit to an-
other while avoiding collisions and minimizing fuel. The algorithm uses sequential
convex programming (SCP) to solve a series of approximate path planning problems
until the solution converges. The MPC-SCP algorithm results in decentralized compu-
tations and communications between neighboring spacecraft only.

Keywords: Swarms, Collision Avoidance, Guidance, Reconfiguration, Optimal

1 Introduction

Spacecraft formation flying continues to be a major area of research. Recently, the
idea of formation flying has been expanded to include swarms of spacecraft [1], which
contain hundreds to thousands of 100-gram class spacecraft, known as femtosats.
Due to their small size, the femtosats have limited communication and computation
capabilities, which require the guidance and control algorithms to be decentralized
so that they are computationally efficient. Additionally, the algorithms must be fuel
efficient since the femtosats will not be able to carry much fuel due to their small size.

J2-invariant orbits [2] are excellent choices for swarm keeping and provide collision-
free motion for hundreds of orbits. However, guidance and control algorithms for swarm
reconfiguration must also be developed. The goal of this paper is to develop a fuel
and computationally efficient guidance algorithm for the reconfiguration of a swarm of
spacecraft located in low Earth orbit (LEO). This algorithm must transfer each space-
craft from one J2-invariant orbit to another. In addition to fuel and computational ef-
ficiency, collision avoidance is a key requirement of the algorithm. This is a difficult
problem in the highly nonlinear dynamics of relative spacecraft motion in the presence
of J2, which is the dominant perturbation in LEO.

Previous work in spacecraft formation flying [3, 4] and robotic swarm research [5,
6, 7] has developed many multivehicle guidance methods. However, the work in for-
mation flying usually deals with a small number of high-capability spacecraft, a dozen

1

at the most. The algorithm for swarm reconfiguration must be different from the cur-
rent literature because it must simultaneously address the large number of agents, the
modest capabilities of each individual agent, and the complex dynamic environment.

Recently, convex programming [8] has been used in multi-vehicle optimization prob-
lems and can be efficiently solved to find a global optimum. However, approximating
the collision avoidance constraints with a convex constraint creates an overly con-
servative collision avoidance region. In this paper, sequential convex programming
(SCP) [9] is used to solve for the trajectories required for swarm reconfiguration. SCP
is an iterative process which ensures that the convex approximations of nonconvex
constraints are accurate Additionally, using multiple iterations allows for more fuel-
efficient trajectories. Additionally, freely available software, such as CVX [10], can be
used to solve the convex programming problems.

The SCP algorithm can run fast enough to be used in real-time and, therefore, it
can be used in model predictive control (MPC) approach. This method updates the
trajectories with new state information that may have arisen because of sensing or
actuation errors, or unmodeled disturbances.

The most important feature of the MPC-SCP algorithm is that it decentralizes the
computation and communication requirements for the swarm reconfiguration with colli-
sion avoidance. This allows the algorithm to be run onboard the femtosats in real time
for a swarm with hundreds to thousands of spacecraft. Additionally, the MPC-SCP al-
gorithm provides some robustness to errors or uncertainties by taking the actual state
information into account when computing the future trajectories. This robustness is not
present in an open-loop, optimal control approach.

The paper is organized as follows. In Section 2, the swarm reconfiguration is dis-
cussed and the optimal control formulation is described. In Section 3, the problem is
converted to convex form and a decentralized SCP algorithm is developed. In Sec-
tion 4, the MPC-SCP algorithm is implemented and the effectiveness of this algorithm
is investigated. In Section 5, the results of simulations and the effectiveness of the
MPC-SCP algorithm is discussed.

2 Guidance of Swarms of Spacecraft

In this section, the swarm reconfiguration is described by a nonlinear, continuous,
optimal control problem. The swarm reconfiguration transfers hundreds to thousands
of spacecraft from one J2-invariant orbit [2],shown in Fig. 1a, to another while prevent-
ing collisions and minimizing the total fuel usage. To properly define the variables and
constraints involved in the optimization problem, two coordinate systems must be de-
fined. First, the Earth Centered Inertial (ECI) coordinate system is used to locate the
chief, or reference, orbit (see Fig. 1b). This coordinate system is inertially fixed at the
center of the Earth. The X̂ direction points towards the vernal equinox, the Ẑ direction
points towards the north pole, and the Ŷ direction is perpendicular to the other two and
completes the right-handed coordinate system. The second coordinate system is the
local vertical, local horizonal (LVLH) coordinate system. The LVLH frame is centered
at the chief orbit. Figure 1b shows the LVLH frame with respect to a chief spacecraft.
The x̂, or radial, direction is always aligned with the position vector and points radi-
ally outward from the Earth, the ẑ, or crosstrack, direction is aligned with the angular
momentum vector, and the ŷ, or alongtrack, direction completes the right-handed coor-
dinate system. The LVLH frame is a rotating frame with a rotation rate of ωx about the

2

Concentric PROs

(a) Spacecraft Swarm

chief

deputy

(b) ECI (X̂, Ŷ , Ẑ) and LVLH Frames (x̂, ŷ, ẑ)

Figure 1: A visualization of the relative coordinate system and a spacecraft swarm [2]

radial axis and ωz about the crosstrack axis. The relative state of the deputy spacecraft
in the LVLH frame is described by xj = [xj yj zj ẋj ẏj żj]T .

The optimization problem for swarm reconfiguration is written using the LVLH frame.
The equations of motion for spacecraft’s position in the LVLH frame (`j = (xj, yj, zj)

T)
are [11]

῭
j = −2S(ω) ˙̀

j − g(`j,œ) + uj (1)

where the function g(`j,œ) ∈ R3 is defined in Ref. [12] and the matrix S(ω) ∈ R3×3 is
defined as S(ω) ˙̀ = ω × ˙̀. Additionally, the orbital elements of the chief (reference)
orbit, œ = (r, vx, h, i,Ω, θ)

T , are geocentric distance (r), radial velocity (vx), angular mo-
mentum (h), inclination (i), right ascension of the ascending node (Ω), and argument
of latitude (θ). Note that the angular rates of the LVLH frame, ω are also determined
by œ (see Ref. [12]). These values are independent of the deputy spacecraft’s motion
so it is assumed that these values can be computed by each spacecraft using some
standard estimation process that uses communicated or measured information and
propagation of the following equation of motion

dœ
dt

= fchief(œ) (2)

where the RHS of this equation is defined in Ref. [12]. Note that Eqs. (1) and (2)
are hierarchical; Eq. (2) does not depend on Eq. (1). Hence, the reference orbital
elements cannot be affected by individual spacecraft and do not need to be considered
variables in the optimization. Therefore, the dynamics constraints are given by Eq. (1).
In addition to the dynamics constraints, the following constraints must be enforced as
well.

‖uj(t)‖ ≤ Umax ∀t ∈ [0, tf], j = 1, . . . , N (3)
‖C[xj(t)− xi(t)]‖ ≥ Rcol ∀t ∈ [0, tf], j = 1, . . . , N − 1 (4)

xj(0) = xj,0 j = 1, . . . , N (5)
xj(tf) = xj,f j = 1, . . . , N (6)

where C = [I3×3 03×3] and xj = (`T , ˙̀T)T . Equation (3) is the constraint describ-
ing the maximum allowable control magnitude (U), Eq. (4) is the collision avoidance

3

constraint describing the minimum allowable distance between two spacecraft (R),
and Eqs. (5)-(6) are the initial and terminal state constraint, respectively. Any reach-
able conditions can be used for Eqs. (5)-(6), but the simulations in Sec. 5 use the
J2-invariant conditions developed in our prior work [2], which provide the velocities
required for J2-invariant orbits for a given position.

The swarm reconfiguration goal is to minimize fuel. Therefore, the swarm reconfig-
uration is formulated as follows:

Problem 1: Nonconvex Optimization

min
uj ,j=1,...,N

N∑
j=1

∫ tf

0

‖uj(t)‖dt subject to {(1), (3)− (6)} (7)

The objective function and the constraints of Eqs. (3), (5), and (6) already meet the
requirements for convex programming. Therefore, only the dynamics, Eq. (1), and the
collision avoidance constraints, Eq. (4), need to be convexified.

3 Sequential Convex Programming

In this section, convexification is presented. This is done by converting both Eq. (1)
and (4) into an acceptable form for convex programming. For the dynamics, this in-
volves linearizing Eq. (1) and discretizing the state and control from Problem 1. This
results in a finite number of affine equality constraints, which are acceptable in a con-
vex programming problem. The collision avoidance constraints in Eq. (4) are converted
to convex inequality constraints. Once the problem is in convex form, a SCP algorithm
is applied to solve the swarm reconfiguration.

3.1 Linearization and Discretization of Dynamics

To convexify Problem 1, the dynamics constraints in Eq. (1) are linearized and the
state and control variables are discretized. This process is shown in detail in our prior
work [12] and approximates Eq. (1) as

xj[k+ 1] = Ad(x̄j,œ)xj[k] +Bduj[k] + cd(x̄j,œ), k = 0, . . . , T − 1, j = 1, . . . , N (8)

where xj[k] = xj(tk), uj[k] = uj(tk), œ[k] = œ(tk). The constraints from Eqs. (3)-(6)
are approximated by

‖uj[k]‖ ≤ U k = 0, . . . , T − 1, j = 1, . . . , N (9)
‖C(xj[k]− xi[k])‖ ≥ R k = 0, . . . , T, j = 1, . . . , N − 1 (10)

xj[0] = xj,0 j = 1, . . . , N (11)
xj[T] = xj,f j = 1, . . . , N (12)

Note that the only constraint that does not satisfy the rules of convex programming
is Eq. (10). This constraint will be modified in the next section so that it is a convex
inequality constraint.

4

3.2 Convexification of Collision Avoidance Constraints

The final step in converting the swarm reconfiguration into a convex program is con-
vexifying the collision avoidance constraints. Since the collision avoidance constraints
currently form the complement of a convex set, the best convex approximations will
be affine constraints. In other words, the sphere which defines the forbidden region is
approximated by a half space which is tangent to the sphere and perpendicular to the
line segment connecting the nominal positions (x̄j) of the spacecraft and the object.
This idea is shown in 2-D using a line and a circle in Fig. 2.

Rcol Prohibited Zone

Collision Free Zone

Spacecraft: i

Spacecraft: j

(a) Nonconvex prohibited zone

Rcol

Prohibited Zone

Collision Free Zone

Spacecraft: i

Spacecraft: j

(b) Convex approximation of prohib-
ited zone

Figure 2: Convexification of the 2-D collision avoidance constraint [12]

Figure 2a shows the prohibited zone for the initial collision avoidance constraint.
Figure 2b demonstrates the convexification of the constraint from Fig. 2a. Based on
the positions of the two spacecraft in the previous iteration, a line (or plane in the 3-
D version) is defined to be tangent to the old prohibited zone and perpendicular to
the line segment connecting the spacecraft. This line defines the half space, which
is new prohibited zone. As can be seen in Fig. 2b, the new prohibited zone contains
the old prohibited zone, so collision avoidance using the convex prohibited zone im-
plies collision avoidance using the original prohibited zone, which is ultimately what is
required. When multiple neighbors are considered, the collision free zone will be the
intersection of the half spaces that define the collision free zones between each neigh-
bor and spacecraft j. This results in a convex polytope around the nominal position of
spacecraft j in which it is guaranteed to be collision free based on the position of the
neighboring spacecraft.

Using this idea, a sufficient condition for the collision avoidance constraints to hold
from Eq. (10) will be

(x̄j[k]−x̄i[k])TCTC(xj[k]−xi[k]) ≥ R‖C(x̄j[k]−x̄i[k])‖ k = 0, . . . , T, j = 1, . . . , N−1
(13)

The sufficiency of this condition is shown in Ref. [12]. x̄i[k] and x̄j[k] are the nominal
trajectories from the previous iteration of the SCP algorithm. These nominal values are
assumed to be known and are not variables in the optimization. Therefore, the collision
avoidance constraints in Eq. (13) are affine and can be used in a convex program.

5

3.3 Sequential Convex Programming Algorithm

Now that Problem 1 has been converted to convex programming form, it can be
written as the following convex programming problem:

Problem 2: SCP

min
uj ,j=1,...,N

N∑
j=1

T−1∑
k=0

‖uj[k]‖∆t subject to {(8), (9), (11), (12), (13)} (14)

where Problem 1 has been discretized and the constraints of Eqs. (1) and (4) have
been approximated by Eqs. (8) and (13), respectively.

The approximations used to get the dynamics and collision avoidance constraints
into convex forms, Eqs. (8) and (13), require a nominal state x̄j[k] for each space-
craft at each time step. Additionally, the nominal vectors must be accurate in order
for the solution to the convex programming problem to be valid. To ensure that the
nominal vectors are good estimates of the actual state vectors, SCP is used. In SCP,
x̄m
j [k] = xm−1

j [k] for iteration m, i.e. the actual state trajectory from the previous it-
eration becomes the nominal state trajectory in the current iteration. To enforce the
collision avoidance constraints, each spacecraft communicates its nominal trajectory
to the other spacecraft.

One of the main advantages of using SCP compared to simply solving the convex
programming problem is that the initial guess is not as critical. Because of the way that
the collision avoidance constraint were convexified, the prohibited zone for each colli-
sion is overly conservative. With convex programming, this will prevent the spacecraft
from achieving some trajectories that are safe. This can potentially lead to non-optimal
trajectories if a poor initial guess is provided. In SCP, the iterations allow the space-
craft to move into an area that was originally prohibited but is actually safe. This is
illustrated in Fig. 3. In iteration m+ 1, shown in Fig. 3b, the spacecraft move into areas
that were originally prohibited in iteration m, shown in Fig. 3a. This idea is how SCP
can achieve more optimal trajectories than a single convex programming problem.

R

Spacecraft: i
Iteration: m-1

Spacecraft: j
Iteration: m-1

Spacecraft: i
Iteration: m

Spacecraft: j
Iteration: m

R

(a) Collision free zone for iteration m

R

Spacecraft: i
Iteration: m-1

Spacecraft: j
Iteration: m-1

Spacecraft: i
Iteration: m

Spacecraft: j
Iteration: m

R

Spacecraft: j
Iteration: m+1

Spacecraft: i
Iteration: m+1

(b) Collision free zone for iteration m+1

Figure 3: Evolution of the 2-D collision avoidance constraint [12]

In the first iteration, an initial guess must be provided for the nominal vector but
in the following iterations, the solution to the previous iteration is used as the nominal
vector. This process continues until the solutions to the sequence of convex problems

6

converges. In each iteration, a trust region is defined for the convex program. The trust
region represents the range of state vectors over which the linearization is accurate. It
is defined as

XLm = {xj| ‖xj − x̄j‖ ≤ Lm} (15)

where Lm is the size of the trust region during iteration m. Additionally, the trust re-
gion in Eq. (15) can be contracted to ensure that the SCP algorithm converges. In
order to ensure convergence, the size of the trust is updated according to the following
equation.

Lm+1 = βLm (16)

where β ∈ (0, 1) is a parameter that determines the worst-case rate of convergence.
Even in convex form, the swarm reconfiguration algorithm will scale poorly because

the collision avoidance constraints are coupled. Therefore, the problem must be de-
coupled so that the computations can be decentralized. Therefore, the collision avoid-
ance constraints must be written in such a way that each spacecraft can compute its
own trajectory yet the entire swarm is still collision free.

The first step to decentralizing the SCP algorithm is limiting the pairs of spacecraft
for which collision avoidance is considered. By only checking for collisions between
spacecraft pairs that were close to colliding in a previous iteration of the SCP algorithm,
the number of constraints in each iteration of Problem 2 can be greatly reduced. Also,
the nominal state vectors become better estimates of the actual state vectors as the
number of iterations increases. This fact can be used to decentralize the optimizations
by assuming that all other spacecraft are fixed objects, located at their positions from
the preceding iteration. Using this assumption, Eq. (13) can be rewritten as

(x̄j[k]− x̄i[k])TCTC(xj[k]− x̄i[k]) ≥ R‖C(x̄j[k]− x̄i[k])‖ (17)
k = 0, . . . , T, i ∈ Ij, j = 1, . . . , N − 1

where

Ij = {i| ∃ k ∈ 1, . . . , T such that ‖C(xi[k]− xj[k])‖ ≤ Rsafe and i < j} (18)

where Rsafe is the minimum distance between two spacecraft so that collision avoid-
ance is not considered in the next SCP iteration and the constraint i < j guarantees
that only one spacecraft will avoid the other one.

Defining the collision avoidance constraints by Eq. (17) allows each spacecraft to
perform its own computations while still maintaining a collision-free swarm. The de-
centralized problem can be written as follows:

Problem 3: Decentralized SCP

min
uj ,j=1,...,N

N∑
j=1

T−1∑
k=0

‖uj[k]‖∆t subject to {(8), (9), (11), (12), (17)} (19)

4 Model Predictive Control

4.1 Problem Formulation

In this section, the decentralized SCP algorithm described in Problem 3 is formu-
lated as a MPC problem. To describe the MPC-SCP algorithm, Problem 4 and Prob-
lem 5 are defined. Problem 4 is defined for cases when the MPC horizon does not

7

reach the terminal time for the reconfiguration. For this reason, the terminal constraint,
Eq. (12), is not enforced in Problem 4. Instead, a terminal cost (hj(x[k], k)) is added
to the objective to estimate the cost of completing the reconfiguration from the state
and time at the end of the horizon. Problem 5 is very similar to Problem 3 with the
only difference being the starting time. Problem 5 is used in the MPC-SCP algorithm
when the horizon reaches the terminal time. In both Problem 4 and Problem 5, the
spacecraft are assumed to have limited communication range. Only pairs of space-
craft within a certain distance will have collision constraints. Problem 4 and Problem 5
are expressed as follows:

Problem 4: Convex Optimization with Terminal Cost for k0 + TH < T

min
uj

k0+TH−1∑
k=k0

‖uj[k]‖∆t+ hj (xj[k0 + TH], k0 + TH) ∀j = 1, . . . , N (20)

subject to

xj[k + 1] = Ad(x̄j,œ)xj[k]+Bduj[k] + cd(x̄j,œ), (21)
k = k0, . . . , k0 + TH − 1, j = 1, . . . , N

(x̄j[k]− x̄i[k])TCTC(xj[k]− x̄i[k]) ≥ Rcol‖C(x̄j[k]− x̄i[k])‖ (22)
k = k0, . . . , k0 + TH , {i, j} : i ∈ Nj, Nj = {i|i > j, ‖xj[k0]− xi[k0]‖ ≤ Rcomm}

‖uj[k]‖ ≤ Umax k = k0, . . . , k0 + TH − 1, j = 1, . . . , N (23)
xj[k0] = xj,MPC j = 1, . . . , N (24)

Problem 5: Convex Optimization with Terminal Constraint for T − TH ≤ k0 < T

min
uj

T−1∑
k=k0

‖uj[k]‖∆t ∀j = 1, . . . , N (25)

subject to (24) and

xj[k + 1] = Ad(x̄j,œ)xj[k]+Bduj[k] + cd(x̄j,œ), (26)
k = k0, . . . , T − 1, j = 1, . . . , N

(x̄j[k]− x̄i[k])TCTC(xj[k]− x̄i[k]) ≥ Rcol‖C(x̄j[k]− x̄i[k])‖ (27)
k = k0, . . . , T, {i, j} : i ∈ Nj, Nj = {i|i > j, ‖xj[k0]− xi[k0]‖ ≤ Rcomm}

‖uj[k]‖ ≤ Umax k = k0, . . . ,T − 1, j = 1, . . . , N (28)
xj[T] = xj,f j = 1, . . . , N (29)

The MPC-SCP algorithm is performed by reducing the horizon of the SCP problem
and then solving this problem repeatedly throughout the reconfiguration. Initially, the
SCP algorithm is run a finite horizon (TH). As the spacecraft approaches this hori-
zon in real time, the SCP algorithm is rerun, using the current time (k0) and position
(xj,MPC), until the new horizon (k0 +TH). It is important to note that k0 is the time at the
beginning of each MPC-SCP iteration and increases with time. xj,MPC is the real-time
position and velocity of the spacecraft when the MPC-SCP algorithm is run. This value
represents the initial condition used in the SCP algorithm. This process is repeated
until the spacecraft reaches the desired position (xj,f) at the final time (T).

8

The result of the MPC-SCP algorithm is a fully decentralized algorithm that can be
run in real time and has robustness to sensor and actuator errors. The decentralization
of the swarm reconfiguration algorithm greatly reduces the communication and compu-
tation requirements of the femtosats. Additionally, the increased robustness properties
of this algorithm reduce the fuel requirements for the femtosats.

4.2 Stability

The stability of the MPC-SCP algorithm is dependent on the terminal cost function
(hj (xj[k], k)) in Eq. (20) of Problem 4. To ensure the stability of the MPC-SCP algo-
rithm, the terminal cost function (hj (xj[k], k)) is defined as the solution to the following
optimization problem.

Problem 6: Convex Terminal Cost Function

Minimize (25) subject to {(24),(26),(28),(29)}

This terminal cost function evaluates the fuel required to complete the reconfig-
uration without considering collision avoidance constraints. There are two reasons
to ignore the collision avoidance constraints when calculating the terminal cost func-
tion. First, the spacecraft can only communicate with other spacecraft within a certain
distance of them. Second, the collision avoidance constraints add complexity to the
problem so removing them greatly reduces the time required for the computation.

Substituting the terminal cost function that results from Problem 6 into Problem 4
results in the following optimization problem.

Problem 7: Stable Convex Optimization for k0 + TH < T

Minimize (25) subject to {(22),(24),(26),(28),(29)}

Initial Position
(k=0)

Actual Trajectory

Desired Final Position
(k = T)

Current Position
(k=k0)

End of Horizon
(k=k0 +TH)

Predicted Trajectory without
Collision Avoidance

Predicted Trajectory with
Collision Avoidance

Figure 4: Illustration of the optimization horizon used in the MPC-SCP algorithm [13]

The concept of this terminal cost function is shown in Figure 4. This figure shows
the various stages of the MPC-SCP algorithm. The first stage is the solid line in Fig-
ure 4. This is the actual trajectory that the spacecraft has traversed and it occurs
between k = 0 and k = k0. k = k0 represents the current time, and the initial time in
the optimization. The next stage occurs between k = k0 and k = k0 + TH and is the
dashed line in the figure. This represents the predicted trajectory up to the horizon
and collision avoidance is considered during this stage. The final stage is the dotted
line and extends from k = k0 + TH and k = T . During this time, collision avoidance
is not enforced. If the second stage (dashed line) extends beyond the final time, the

9

final stage does not exist and Problem 5, which always enforces collision avoidance,
should be used instead of Problem 7.

Using Problem 7, which contains the stabilizing terminal cost function, to replace
Problem 4 in the MPC-SCP algorithm forces the algorithm to converge. This algorithm
uses the solution to Problem 5 or Problem 7 and, in either case, the final state is
fixed from Eq. (29). Therefore, the trajectory is forced to converge to the desired final
state as long as the optimizations are feasible. The feasibility of the optimizations is
discussed in the following subsection.

4.3 Feasibility

For the trajectories from the MPC-SCP algorithm to converge, the optimizations
must be feasible. Infeasibility can be caused by two things: The collision avoidance
constraints cannot all be satisfied or the terminal constraint cannot be satisfied with-
out violating the limit on the velocity and/or control vectors. The collision avoidance
infeasibility arises because other spacecraft can only be detected if they are within the
communication radius (Rcomm). Therefore, collisions that occur with spacecraft outside
of the communication radius are not considered until a later time step. For this reason,
several conditions are introduced to ensure that collision avoidance is guaranteed.

In order to guarantee feasibility, an artificial velocity constraint is imposed on the
problem to bound the distance that each spacecraft can move during each time step.
This condition is written as follows.

‖Dxj[k]‖ ≤ Vmax k = k0, . . . , T, j = 1, . . . , N (30)

where D = [03×3 I3×3]. Adding this constraint to Problem 7 and Problem 5 yields
Problem 8 and Problem 9, respectively.

Problem 8: Feasible Convex Optimization for k0 + TH < T

Minimize (25) subject to {(22),(24),(26),(28),(29),(30)}

Problem 9: Feasible Convex Optimization for T − TH ≤ k0 < T

Minimize (25) subject to {(24),(26),(27),(28),(29),(30)}

If the optimization problem in Problem 3 is feasible the following conditions ensure
that the MPC-SCP algorithm using Problem 8 and Problem 9 is feasible:

Proposition 1: Detectable Collisions
All spacecraft that can cause collisions within the current horizon are able to be de-
tected if

Rcomm ≥ 2VmaxTH∆t+Rcol (31)

Proof: This condition guarantees that any spacecraft that could potentially cause a
collision before the end of the MPC horizon is detected and therefore considered in
the optimization. The length of the horizon is the number of time steps (TH) multiplied
by the length of each time step (∆t). Additionally, the maximum relative velocity be-
tween two spacecraft is 2Vmax. Therefore, the maximum change in the relative distance
between two spacecraft is given by the first term on the right hand side of Eq. (31).
To ensure that all collisions are detected, the difference between the communication
radius (Rcomm) and the collision radius (Rcol) must be at least as big as this distance.
This establishes Eq. (31).

10

Proposition 2: Computational Feasibility
The new control sequence can be computed before the previous horizon is reached if

trun ≤ TH∆t (32)

Proof: See Ref. [13].
Propositions 1-2 ensure that infeasibility of the MPC-SCP algorithm is not caused

by violations to the collision avoidance constraints. Therefore, the collision avoidance
constraints are satisfied and there are no collisions at the discrete time steps. However,
it is still possible that collisions occur in between time steps. The following theorem
addresses this issue.

Theorem 1: Collision Avoidance between Time Steps
If two spacecraft are collision free during two consecutive time steps k and k + 1 and
Eqs. (33)–(34) are satisfied, then the two spacecraft are collision free in the interval
t ∈ [k∆t, (k + 1)∆t].

Vmax <
Rcol

∆t
(33)

Rcol ≥


√

(R̄col + a∗∆t2

4
)2 + (Vmax∆t)2 − (a∗∆t2)2

4
if a∗ < min{2Vmax

∆t
, amax}√

(R̄col + amax∆t2

4
)2 + (Vmax∆t)2 − (amax∆t2)2

4
else if amax <

2Vmax

∆t

R̄col + Vmax∆t
2

else

(34)

where

a∗ =
2√
3

√
R2

col

∆t4
− V 2

max

∆t2
(35)

Proof: See Ref. [13].
In addition to infeasibility caused by collision avoidance constraints, infeasibility

can also be caused by the constraints on maximum velocity and control magnitudes.
This occurs because the spacecraft have a limited communication radius in the MPC-
SCP formulation and, therefore, cannot detect collisions occurring after the MPC-SCP
horizon. To reduce the likelihood that the maximum velocity causes infeasibility, Vmax

should be chosen to be as large as possible while still satisfying Propositions 1-2
and Theorem 1. If the optimization is infeasible due to maximum velocity or control
constraints, the final time or the terminal state set can be extended to make the opti-
mization feasible.

Remark 1:
When uncertainties are included in the system, forcing the spacecraft to reach a termi-
nal position is unrealistic. Therefore, the terminal state can be replaced with a terminal
set as follows:

‖xj[T]− xj,f‖ ≤ δ (36)

where δ > 0 is the radius of a ball around xj,f which must contain the terminal position
of spacecraft j.

Remark 2:
The time step (∆t) is a critical parameter in Propositions 1-2 and Theorem 1. Reduc-
ing ∆t decreases the required communication radius (Rcomm) and collision radius (Rcol)
as described in Proposition 1 (Eq. (31)) and Theorem 1 (Eq. (34)), respectively. Ad-
ditionally, the time step is also used as the discretization time step so reducing it also

11

reduces the discretization errors in the convexification process. However, reducing the
time step increases the number of variables in the optimization, which will increase the
run time (trun). This will make it more difficult to satisfy Proposition 2 (Eq. (32)).

To achieve the benefits of a small time step without making the optimization too
large for MPC, separate time steps are defined for the time period before the end
of the horizon (∆t1) and for the time period after the horizon (∆t2). Since collisions
and communications are not considered after the horizon, ∆t2 does not affect the
conditions in Propositions 1-2 or Theorem 1. Therefore, reducing ∆t1 achieves the
same benefits as reducing the time step for the entire optimization but since most of
the optimization occurs after the horizon, the number of variables in the optimization
does not increase significantly.

5 Numerical Simulations

In this section, simulations of the swarm reconfiguration are presented using the
MPC-SCP algorithm. The MPC-SCP algorithm is compared to an open-loop opti-
mization, for a 10 spacecraft formation, and the fuel efficiency and accuracy of the
trajectories are compared.

All of the simulations are run with a reference orbit having the following initial orbital
elements: 6878 km semimajor axis, 0 eccentricity, 45 deg inclination, 60 deg right
ascension , 0 deg argument of perigee, and 0 deg true anomaly. Additionally, the
length of the transfer, tf , is 5677 s, or one orbit and the SCP algorithm is considered to
be converged if the trajectories for two consecutive iterations have no point exceeding
ε = 10−3. In all the simulations, the initial and terminal conditions are determined by
randomly generating the positions and then applying the J2-invariant conditions from
out prior work [2] to determine the desired velocities. All of the convex optimizations
were performed using CVX [10].

The simulation results for the 10 spacecraft formation reconfiguration are shown in
Figure 5 and Table 1. Both the MPC-SCP and the open-loop algorithms were run using
a collision radius (R) of 150 m, a time step (∆t) of 60 s and an optimization horizon
(TH) of 3 time steps (MPC-SCP only).

Figure 5a shows the trajectories for 10 spacecraft using both the MPC-SCP and
open-loop algorithms. In some cases, such as the green dashed trajectory, the tra-
jectories from the two methods are quite different. This can be caused by errors that
arise from the convexification process. In the open-loop case, these errors are not ac-
counted for and the resulting trajectory may not reach the terminal state. On the other
hand, the MPC-SCP algorithm updates the trajectory using real-time positions so the
terminal error is much smaller. The difference in terminal error between the two meth-
ods is shown in Figure 5b. The MPC-SCP algorithm (solid line) reaches a terminal
position (circle) that is less than 50 mm from the desired terminal state (star). This is
over two orders of magnitude better than the open-loop trajectory (dotted line), which
reaches a terminal position (square) over 5 m from the desired state. The average
terminal errors and fuel usage are shown in Table 1.

Table 1 shows the average terminal position error and fuel usage for both the MPC-
SCP and open-loop trajectories. The terminal error decreases dramatically when the
MPC-SCP algorithm is used instead of the open-loop optimization. However, the fuel
usage required using the MPC-SCP algorithm is about 7% more than the fuel us-
age of the open-loop method. The increase in fuel consumption is largely due to the

12

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

2

3

4

5

x (km)

10 Spacecraft Reconfiguration using MPC and Open−Loop Algorithms

y
(k

m
)

Open−Loop
MPC

(a) View of a 10 spacecraft reconfiguration

−0.21 −0.209−0.208 −0.207−0.206 −0.205−0.204−0.203 −0.202−0.201 −0.2
1.35

1.351

1.352

1.353

1.354

1.355

1.356

1.357

1.358

1.359

1.36

x (km)

Accuracy of Methods to Converge to Terminal Position

y
(k

m
)

Terminal Position
Open−Loop
MPC

(b) Enlargement of the terminal position for one
spacecraft

Figure 5: x-y projection of the reconfiguration of 10 spacecraft using MPC-SCP and
open-loop algorithms [13]

Table 1: Simulation results for the reconfiguration of a 10 spacecraft formation using
MPC-SCP and Open-Loop SCP algorithms

Average Algorithm Performance
Algorithm Fuel Cost (m/s) Terminal Error (m)

MPC-SCP Algorithm 2.242 0.032
Open-Loop SCP Optimization 2.100 2.293

decentralized communication. In the MPC-SCP algorithm, spacecraft only consider
collisions up to the end of the horizon. In Figure 5, spacecraft 2 (solid red line) per-
forms a large maneuver when the MPC-SCP algorithm is used. This maneuver occurs
because a collision is detected and must be avoided in less than three time steps. This
is an aggressive maneuver, which does not occur in the open-loop case because all
collisions are known at the initial time because all-to-all communication is assumed.
Overall, the MPC-SCP algorithm greatly improves the robustness of the trajectories
and decentralizes the communication of the swarm with the only a small increase in
fuel consumption.

In the next simulation, the conditions in Propositions 1-2 and Theorem 1 are en-
forced to ensure that the algorithm is feasible and avoids collisions between time steps.
Additionally, the idea of different time steps before and after the horizon, which is dis-
cussed in Remark 2, is implemented. This simulation has the same parameters as
the previous one with the following exceptions: Vmax = 0.005 km/s, Umax = 0.001 km/s2,
Rcomm = 2 km, TH = 12, ∆t1 = 15 s, and ∆t2 = 60 s.

The results of this simulation are compared to the results of a simulation with the
same parameters except using a single time step of ∆t = 60 s and maintaining a 180 s
horizon by setting TH = 3. The results of these simulations are shown in Table 2.

Table 2 shows the simulation results using the MPC-SCP algorithm satisfying Propo-
sitions 1-2 and Theorem 1. When using a constant time step of 60 s, the algorithm
performs similarly to how it did in the previous simulation, shown in Table 1. However,
when a time step of 15 s is used before the end of the horizon, the algorithm shows

13

Table 2: Simulation results for the reconfiguration of a 10 spacecraft formation using
the MPC-SCP algorithm satisfying Proposition 1-2 and Theorem 1

Average Algorithm Performance
Time Step Size Fuel Cost (m/s) Terminal Error (mm)

∆t = 60 s 2.242 12.974
∆t1 = 15 s, ∆t2 = 60 s 2.178 0.709

improvements in both fuel efficiency and terminal error compared to the constant time
step case. Additionally, the run time time using smaller time steps is still short enough
that Proposition 2 is satisfied.

6 Conclusion

In this paper, a SCP algorithm was developed to solve for the optimal trajectories
for swarm reconfiguration. To use SCP, the problem was convexified. To reduce the
computation time required, the collision avoidance constraints were decentralized by
having each spacecraft treat the other spacecraft’s trajectories as fixed. This allowed
each spacecraft to run its own SCP algorithm to solve for its optimal trajectory as long
as the trajectories of the other spacecraft were known.

This SCP algorithm was then used to compute the optimizations in a MPC frame-
work. Using MPC-SCP decreased the length of the optimizations that needed be
solved, which allowed smaller time steps in the optimizations. By using smaller time
steps and shorter horizons, the MPC-SCP algorithm bounded the distance each space-
craft could travel during one optimization. This allowed us to relax the communication
requirements on each spacecraft by considering communication between two space-
craft only if they were within a certain distance.

To ensure that the trajectories resulting from the MPC-SCP algorithm converged,
the terminal cost function was converted to a convex optimization problem with a termi-
nal constraint, which ensured that if the optimization was feasible, it would converge.
Also, an upper bound on the magnitude of the velocity was introduced so that two
propositions could be developed to ensure that each of the receding horizon optimiza-
tions had a solution. Additionally, a theorem was developed to guarantee that the
spacecraft do not collide in between discrete time steps.

The MPC-SCP algorithm was used to compute the optimal trajectories for a ran-
domly distributed swarm. The MPC-SCP algorithm drove the spacecraft to within sev-
eral mm of the desired terminal state despite the convexification errors. Additionally,
the time required to run each optimization of the MPC-SCP algorithm was much less
than the length of the MPC horizon.

Acknowledgments

This research was carried out in part at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration. c©2013 California Institute of Technology. This work was supported
by a NASA Office of the Chief Technologists Space Technology Research Fellowship.
Government sponsorship acknowledged.

14

References

[1] S.-J. Chung and F. Y. Hadaegh, “Swarms of Femtosats for Synthetic Aperture Ap-
plications,” in Proceedings of the Fourth International Conference on Spacecraft
Formation Flying Missions & Technologies, (St-Hubert, Quebec), May 2011.

[2] D. Morgan, S.-J. Chung, L. Blackmore, B. Acikmese, D. Bayard, and F. Y.
Hadaegh, “Swarm-Keeping Strategies for Spacecraft Under J2 and Atmospheric
Drag Perturbations,” Journal of Guidance, Control, and Dynamics, vol. 35, no. 5,
pp. 1492–1506, 2012.

[3] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A Survey of Spacecraft Formation
Flying Guidance and Control (Part I): Guidance,” in Proceedings of the American
Control Conference, pp. 1733–1739, Jun. 2003.

[4] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A Survey of Spacecraft Formation
Flying Guidance and Control (Part II): Control,” in Proceedings of the American
Control Conference, pp. 2976–2984, Jun. 2004.

[5] R. M. Murray, “Recent Research in Cooperative Control of Multivehicle Systems,”
Journal of Dynamic Systems, Measurement, and Control, vol. 51, 2007.

[6] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of Groups of Mobile Au-
tonomous Agents Using Nearest Neighbor Rules,” IEEE Transactions on Auto-
matic Control, vol. 48, no. 6, pp. 2976–2984, 2003.

[7] M. G. Earl and R. D’Andrea, “Iterative MILP Methods for Vehicle-Control Prob-
lems,” IEEE Transactions on Robotics, vol. 21, no. 6, pp. 1158–1167, 2005.

[8] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cam-
bridge Univ. Press, 2004.

[9] R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A Trust Region Method Based on
Interior Point Techniques for Nonlinear Programming,” Math. Program. A, vol. 89,
no. 1, pp. 149–185, 2000.

[10] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex Program-
ming (version 1.22),” May 2012. http://cvxr.com/cvx/.

[11] G. Xu and D. Wang, “Nonlinear Dynamic Equations of Satellite Relative Motion
Around an Oblate Earth,” Journal of Guidance, Control, and Dynamics, vol. 31,
pp. 1521–1524, Sep.-Oct. 2008.

[12] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Spacecraft Swarm Guidance Using
a Sequence of Decentralized Convex Optimizations,” in AIAA/AAS Astrodynamics
Specialist Conference, (Minneapolis, MN), August 2012. AIAA 2012-4583.

[13] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Decentralized Model Predictive
Control of Swarms of Spacecraft using Sequential Convex Programming,” in
AAS/AIAA Space Flight Mechanics Conference, (Kauai, HI), February 2013. AAS
13-439.

15

