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* Degree of performance proportional to
Instrument size

* Payload distribution over a no. of satellites

* Modularity
* Launch Flexibility




Investigations by Formation Flying

SAR intefferometry

Planet Finding and Imaging

Gravimetry for Gravitational Mapping
Stereo Imaging (addressed in this paper)
Space Weather Monitoring

3-D Mapping



Requirements. af Stereo Imaging by
Multi-Spacecrafts

* Relative position modeling of formations including

 GPS based attitude and Position Estimation for Constellation and
Earth Orbit Formations

* So far researchers concentrated mainly on relative position
estimation and control

* Very Little effort has gone in the field of Relative Attitude Control
e Position and Attitude Loops were analyzed in decoupled concepts
* Co-ordinated 6-dof control effort using modern control theory



Formation Gontrol Requirements

Autonomous.réal-time control of relative position and relative
attitude among formation members

— Relative Attitude Maintenance is needed to orient the thrust direction
for efficient reconfiguration of position loop

— Data collection by formation cluster is a function of both spacecraft
position and attitude

Attenuate the effect of perturbing forces which otherwise

disturbs the formation either by inter-satellite interference

and collisions or by path divergence

Performance trade-off between Mission Goals and Fuel cost.

General guideline is to meet the baseline requirement of X/,
the control accuracy should be better than x/10 and the
navigation or sensing accuracy should be better than x/100:- ..



Contributions of the Paper

An innovative coupled dynamics and control algorithm is
developed for High Precision Stereo Imaging by a dual-
microsatellite formation flying mission

6 Degree of Freedom model where each follower generates
the attitude references in real-time, based on relative
position and translational motion between the leader and its
followers

For the orbit control loop, the desired parameters are
specified in terms of orbital elements and GPS +
accelerometer forms the feedback source

Desired attitude reference is derived on-board from the
specified Earth view co-ordinates. Star tracker + gyro provid- :{
feedback information
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ROE to Cartesian or Hill’s VVector
(Position, Velocity)
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*u and u, are the mean argument of latitude at any time t and epoch
time t,
* ‘n’ is the mean orbital rate in rad/s
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The notation «;, indicates the angular velocity of frame ‘B" with respect to frame ‘A
as represented in frame 'C.




Navigation System

IRAP (Inertial Reference Gyro with Accelerometer Package)
with GPS and Star Tracker Updates forms the Navigation Loop

Star Tracker provides the instantaneous attitude of the
spacecraft with respect to Inertial Frame. Gyro data is used to
propagate the attitude between star tracker updates.

For the follower spacecraft control, the relative attitude and
rate of the follower with respect to the leader’s orbit reference
frame is represented in the follower frame



Navigatiefi System (Contd...)

Position Path

* Accelerometer measures the acceleration in body frame
which is represented in inertial frame using transformation
matrix obtained from the instantaneous body to inertial
attitude quaternion.

 This transformed acceleration is double integrated and used
to propagate the position information between absolute GPS
updates.

* The processed Cartesian data is transformed to instantaneous
orbital elements and fed to the controller
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For the position Loop, fuel consumption is the cost functional

as thruster is the prime actuator to maintain the relative

position

* For attitude loop, time is the cost functional to be optimized
to perform fast reorientations with wheels to capture the
imaging spots in specified time and also to acquire the
desired thruster orientation at the time specified for Orbit
correction.
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LQR Based Controller

The cost functionalfor the LQR controller is given by

r % [ [XTQ(t)X ' uTR(t)u}dt +%XT(tf JOex(tf)

Where, Q(t) is a positive semidefinite state weighting matrix, R(t) is a
positive definite control weighting matrix and Q, is positive definite terminal —
weighting matrix. The objective is to find the feedback gain K which minimizes
the cost functional J.

The optimum feedback gain is given by

K =R 1B P(t)

The matrix P is computed by solving the continuous time Riccati equation

p(t)-+A'P(t) + P()A-PHBRBP(t) +Q=0



Block Diagram of Satellite Formation Control
Loop (Coupled Position and Attitude)
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Effect of Initial Orbit Element
Separation on S/C Relative
Position and Velocity (Open Loop)
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Dynamics Parameters

S/C Mass 80.0 Kg
Maximum Thrust 0.2 N
Orbit Altitude 817.0 Km
Inclination 08.77 °
Right Ascension 193.0 °

Maximum Wheel Momentum

0.36 NmS @ 8000 RPM

Maximum Wheel Torgue

0.018 Nm

S/C Inertia about Yaw, Roll and Pitch

Leader 10, 9, 9.5 Kg-m?
Follower 11, 8, 9 Kg-m?
Star Tracker Update time for Gyro 128 ms
GPS update period for IRAP based position 10.0 s




Simulation Scenario

« Leader’s Orbital Parameters a, e, i,Q,w, and M at Epoch (start) are
(7198 Km, 0:0005176, 98.6868 °, 191.80 °, 323.397 ° and 36.605 °)

*Initially Leader is Nadir Pointing and Follower is away from Leader in
pasition by [-68 m -214 m -1500m ] in radial, along track and cross
track direction. This corresponds to relative error of 100 m less in ‘a’,
3 % lessin ‘e’ and 0.01° less in 1’

* From this the follower is reconfigured to relative position of [0.0, 100

m, -200 m] position and by control and maintained (i.e., zero relative
velocity).
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