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Abstract: This paper investigates the optimal rendezvous with power-limited 
propulsion systems and collision avoidance. A 26-state dynamic model is 
established including both translational and rotational dynamics. This model is 
effective for describing autonomous rendezvous with both a three-axis attitude 
stabilized target and a tumbling one. Collisions are prevented through setting a 
safety sphere centered at the mass center of the target. Two rendezvous 
scenarios in actual missions are considered in this paper. The first case is to 
drive the chaser vehicle to rendezvous with a three-axis attitude stabilized 
target. A light-of-sight (LOS) tetrahedral path constraint is imposed for 
vision-based sensing and safety considerations. The second is to rendezvous 
with a tumbling target with an arbitrary docking port. The novel concept of 
tumbling plane is introduced to describe the tumbling motion. Then, the 
optimal-fuel rendezvous is transformed into a quadratic programming problem 
(QPP) using the state dependent model predictive control (SDMPC). 
Numerical simulations demonstrate that the proposed method can guarantee 
the safety of the autonomous rendezvous and to minimize the fuel 
consumption. In addition, this algorithm can be numerically solved rapidly. 
 
Keywords: Optimal Rendezvous, Online trajectory planning, State Dependent 
Model Predictive Control. 
 
1. Introduction 
 
Although significant development has been achieved in optimal rendezvous, 
rendezvous and capture a resident space object (RSO) still require 
human-in-the-loop operations. In contrast, Autonomous Rendezvous and 
Capture (ARC) require sensor suites that enable autonomous navigation and 
control with fault detection and recovery. Furthermore, ARC technology has 
also evolved with on-orbit service developments, such as the Demonstration 
for Autonomous Rendezvous Technology (DART), the Experimental Satellite 

Systems-11 (XSS-11)，and the Spacecraft for Universal Modification of Orbits 

(SUMO). These programs demonstrate that there is a need for an effective 
autonomous rendezvous optimal control algorithms which drive the chaser 
spacecraft rendezvous with the target under practical constraints. 
 
Minimizing propellant consumption is critical to space operations, autonomous 
rendezvous to optimize fuel usage has been studied extensively [1]. In earlier 
study, few rendezvous problems were treated under realistic conditions, such 
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as limitation of thruster activation and collision avoidance. For example, 
Lembeck [2] investigate the low-thrust rendezvous in circular orbit without 
constraints. Guelman [3] investigate the optimal-fuel rendezvous in circular 
orbits with fixed terminal-approach direction. Due to the limitations in previous 
work, Richards et al. [4] introduced the MILP method for finding fuel-optimal 
trajectories subject to constraints of collision avoidance and prevention of 
thruster plumes. Based on Richards’ research, Breger [5] studied online 
generation of safe, fuel-optimized trajectories that guarantee collision 
avoidance when system anomaly happens. 
 
In recent years, David Benson [6] and Huntington [7] presented the Gauss 
pseudospectral method which is better at dealing with smoothing optimal 
problem, and it is receiving more attention in the field of optimal control. 
Boyarko [8] solved the problem of minimum-time and minimum-energy optimal 
rendezvous trajectories using both the Gauss pseudospectral approach and 
PMP. Unfortunately, since the optimal control problem is transformed into a 
NLP, it is difficult to get the solution of NLP in a short time especially when 
there are a large number of Gauss nodes. Lopez and Mclnnes [9] developed a 
novel guidance and control methodology that hinges on defining a suitable 
scalar function and that represents an artificial potential field describing the 
locality of the target vehicle. Mclnnes [10] and Ender [11] investigated the 
development and evaluation of potential function guidance for path 
constrained proximity maneuvers of spacecraft at the International Space 
Station. Epenoy [12] introduced an exacted penalty function to the solution of 
inequality state-constrained optimal control problems. 
 
Although MPC has its origins in the process industries, it has recently been 
applied to trajectory planning problems because of some attractive 
characteristics. For example, MPC re-plans the optimal trajectory at each 
sampling instant and ARC typically has many constraints, including the limited 
thruster capability, collision avoidance and the dynamic characteristics of the 
target. Thus, Louis Breger [13] developed an online model predictive controller 
for spacecraft formation flying. Hartley [14] applied the MPC to provide 
trajectory guidance while Gavilan [15] presents a chance-constrained robust 
MPC for spacecraft rendezvous. 
 
Due to fuel exhaust or ACS anomaly, it is common for the malfunctioned 
satellites to be spinning along a fixed axis as time goes on. Previous research 
work mainly focuses on a simplified case where the spinning axis is assumed 
to be parallel to or coincident with one of the orbital coordinate axes. Even 
though the space object is most likely to be tumbling along a fixed spinning 
axis, its axisymmetric axis for example, the fixed axis does not necessarily 
have to parallel to or coincide with one of the three axes in the orbital 
coordinate system. Accordingly, the current paper expands previous work by 
firstly introducing the novel concept of tumbling plane that is perpendicular to 
the spinning axis. For a tumbling object, the docking axis is constantly rotating 
within this plane. In this way, it would be convenient to describe the tumbling 
motion explicitly and mathematically for more general cases. Meanwhile, a 
safety sphere which centered at the target is constructed for the chaser 
spacecraft to avoid collision with the flexible appendages of the target. 
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To the best of the authors’ knowledge, there has been no report on six 
degree-of-freedom control of spacecraft by applying the state dependent 
model predictive control (SDMPC). The current paper deals with the 
optimal-fuel rendezvous with an uncooperative space object. The basic 
objective is to drive the chaser vehicle with power-limited actuators under the 
conditions of path constraint and collision avoidance. 
 
The structure of this paper is organized as follows. Section II presents a six 
DOF model to describe the relative motion, and gives the formulation of a 
rendezvous problem with path constraint and control magnitude limitation. The 
autonomous rendezvous problem considering docking port alignment and 
attitude maneuvering is formulated as a state dependent model predictive 
control (SDMPC) problem In Sec. III. Section IV presents simulation results 
and the effectiveness of the proposed method is discussed. Finally, the 
conclusions are given in Sec. V. 
 
2. Rendezvous Modeling 
 

2.1 Relative Translational Dynamics 

 
The relative motion of the chaser with respect to the target is governed by the 
Hill–Clohessy–Wiltshire (HCW) equations. This model is expressed in the 
orbital frame which is centered at the target, OX points to the instantaneous 
velocity direction of the target, OZ is starts from the target to the center of the 
Earth, OY is mutually perpendicular to theOX andOZ axes, and  OX OY OZ
forms a right-handed coordinate system. This frame can be illustrated in Fig. 1. 
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Figure 1. Spacecraft rendezvous geometry and coordinates 

 

2

2

2

2 3

  

  

   


 





x

y

z

F
n

m
F

n y
m

F
n n z

m

x z

y

z x

                            (1) 

where m and n represent the mass and orbital angular velocity of the target, 

 T
, ,x y zF F F denote the thruster forces expressed in the HCW frame. Define r

as the relative states including the components of relative position and velocity, 
then the HCW equations can be written in the state-space representations 

    X A X + B U                            (2) 

where  T
, , , , ,    x y z x y zX and  T

, ,  x y zu u uU denotes the control acceleration, 

the state transition matrix A and the control input matrix B are given by 
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As can be seen, the radial z and along-track x components of the relative 
motion vector compose the in-plane motion which is uncoupled from the 
cross-track z component governed the out-of-plane motion. Although HCW 
equations are approximate formulations which ignored the influences of 
nonlinear factors when the target’s orbit is elliptical, the HCW has widely been 
employed for rendezvous analysis. This is mainly because the autonomous 
rendezvous covers relatively short time spans. Consequently, HCW equations 
remain effective throughout our discussion in this paper. 

 
In order to evaluate the states in the prediction horizon, the model is 
discretized with a sampling period sT , yields a discrete-time model as: 

  1
    
k d k d kX = A X + B U

                                                       
(4) 

where the states 1

kX at the time instant 1k can be computed by the states 

kX

and control inputs 
kU at the time instant k , and the discrete state transition 

matrix 
dA and discrete input matrix 

dB for a single step can be expressed as 

11 12 13 14 15 16

21 22 23 24 25 26
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51 52 53 54 55 56

61 62 63 64 65 66



 
 
 
 

  
 
 
 
  

d d d d d d

d d d d d d

d d d d d d
d

d d d d d d

d d d d d d

d d d d d d
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  (5) 

Note that since , A B are constant matrices, thus, the discretized state 

transition matrix 
dA and input matrix 

dB are constant matrices either. 

 
In order to describe the tumbling motion of the target, the tumbling frame
( )tpOXYZ centered at the center of the target is established. The relationships 

between the tumbling frame and orbital frame can be seen in Fig. 2, the 
tumbling plane is constructed by tp tpO X and tp tpO Z axes with the rotating docking 

axis included. Specifically, tp tpO X , starting from the center of the target, points 

to the opposite direction of the velocity, tp tpO Z is perpendicular to tp tpO X along 

the direction of the angular velocity, and  tp tp tp tp tp tpO X O Y O Z forms a 

right-handed coordinate system. 
 
Consequently, the scenario investigates autonomous rendezvous with a 

tumbling object. Define  T
0, ,0tp as the angular velocity of the docking 

axis, and define  T
, ,tp tp tp tp

k x y z k
L L LL as the docking axis vector expressed in the 

tumbling frame at the time instant k. As can be shown in Fig. 3, the docking 
axis vector coordinates 1

tp
kL at the time instant 1k can be calculated by 

 1 tp tp
k kL RL                           (6) 
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whereT represents the fixed time period. Please note that since 0  for the 
three-axis stabilized target, hence, 1

tp tp
k kL = L for any time step. 
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Figure 2. Relationships between the orbital frame and tumbling frame 
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Figure 3. Docking axis coordinates in the tumbling frame 

 
As shown in Fig. 4, define k as the coordinates in the HCW frame from the 

docking port to the chaser at the time instant k. Since the relative state 
variables are defined in the orbit frame, therefore, the docking axis coordinates

tpL needs to be transformed into the HCW frame. Define tp
HCWC as the rotation 

matrix from the tumbling frame to the HCW frame, and the matrix can be 
derived through two coordinate transformations. The relative position 
relationships between the mass centers of the two spacecraft and the docking 
port can be obtained by 

   HCW tp tp
k k k k HCW kr L r C L                            (8) 
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Figure 4. Relative position considering the length of the docking axis 

 
Define the augmented state variables 

kX in three-dimensional context as 

 T
, , , , , , , , , , ,     HCW HCW HCW

k x y z x y z x y z x y zX r r r r r r L L L                 (9) 
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Then, the whole model for describing the relative translation can be written as: 

1
   
  k d k d kX A X B U                         (10) 

where 
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2.2  Safety Sphere Constructed for the Target 
 
With consideration of the target’s tumbling dynamic characteristics, it is 
possible for the chaser to collide with the flexible appendages equipped on the 
target. Hence, the safety sphere is constructed in order to avoid collision when 
approaching with a tumbling target. It is assumed that the angle between the 
orbital plane and tumbling plane is . The chaser is not allowed to enter this 
spherical region during the approaching process. In addition, the chaser needs 
to maneuver its attitude to match the angular velocity of the docking port. 
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Figure 5. Transformation from the tumbling frame to the orbital frame 

 
According to the definition of tumbling frame above, the rotation matrix tp

HCWC

can be derived through two coordinate transformations. As can be seen in Fig 
5, first, the tumbling frame is rotated around the tp tpO Z axis. Then, the new 

tumbling frame ( ' ' ' ')tpO X Y Z is rotated around the ' '

tp tp
O X axis. Consequently, 

the transformation matrix tp
HCWC can be obtained by 

      = ( ) ( ) tp
HCW x zC C C                         (11) 

where 
1 0 0

( )= 0 cos( ) sin( )

0 sin( ) cos( )

  
 
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xC     
cos( ) sin( ) 0
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0 0 1
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   
  

zC

   

    (12) 

 
In this paper,  and = +   . Define I

HCWC as the rotation matrix from the 

inertial frame to the HCW frame. Hence, the rotation matrix from the inertial 
frame to the tumbling frame can be derived as 

= I HCW I
tp tp HCWC C C                               (13) 

 
2.3  Euler Rotational Dynamics 
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Dynamics of the rotational motion of a rigid body (spacecraft) can be 
expressed by nonlinear continuous-time Euler’s equations as 

       J J T                            (14) 
where  ,  C T denote the chaser and target spacecraft respectively. The 

inertia matrix along the principal axes is 11 22 33( , , )      diag J J JJ where ‘diag’ 

represents a diagonal matrix. The angular velocity and control torque are 

presented as
T

        x y z, , and 
T

, ,      x y zT T TT . 

 
The attitude kinematics is governed by 
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The kinematic and dynamic models of spacecraft attitude are highly nonlinear 
equations which need to be transformed into a linear-like structure so that the 
rotational model can be written in a state-space form. Define

 T

0 1 2 3, , , , , ,          x y zq q q qX as the state variables, Eqs. (14) and (15) can 

be synthesized as 
( )      tX A X B U                                             (16) 
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Note that although the control input matrix B is a constant matrix, the time 
dependent state variables    

x y z, , are incorporated in A , thus, A is a 

state dependent coefficient matrix. Like the way the relative translational 
model is treated, the Euler rotational model also needs to be discretized. 

Define  T

1 0 1 2 3 1
, , , , , ,         

 


k x y z k
q q q qX as the state variables at the time 

instant 1k , the discretized attitude model can be written as 

1
    
     

k k k k kX A X B U                       (18) 

where  T
, ,   

k x y z k
T T TU denotes the control torque at the time instant k . 

Please note that unlike , 
d dA B which are constant matrices at any step, 

discretized state transition matrix 
kA and input matrix 

kB are time-varying at 

every time step. This is because A is a state dependent coefficient matrix 
including angular velocity components. 
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2.4  6DOF Dynamic Model 

Based on Eqs. (10) and (18), define  , ,  C T
k k k kX X X X , then a 26-state 

dynamic model governing rendezvous dynamics can be given as 

      +1  k k k k kX A X B U                     (19) 

where 
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This dynamic model will be used as recursive equations for predicting system 
states in future steps. The procedure will be outlined in the following section. 
 
 
3 SDMPC Formulation for Optimal Rendezvous 
 
3.1  State Dependent Model Predictive Control Formulation 
 
In this section, the SDMPC optimization technique is proposed to address the 
class of nonlinear time-varying systems described by Eq. (19), and the 
procedure of transforming the optimal rendezvous into a QPP is formulated. 
 
3.1.1 Prediction of the Control Inputs 
 
As is shown above, the state variables + , 1,2,...,k i i NX at future steps can be 

obtained by repeatedly using the recursive equations based on the initial 
values kX and kU . Define 1kU and kU as the control inputs for the step 1k  

and the control correction variables for the step k , accordingly the control 
inputs at step k can be computed by 

1 k k kU U U                                (20) 

Then the SPM Eq. (19) can be transformed into the following form 
+1

1

      
        
      

k kk k k
k

k k

X XA B B
U

U UI I0     
               (21) 

Please note that the iterative equations above are based on the determined 
inputs, so that the iterative computations can proceed. Define N and cN as the 

prediction horizon and the control horizon variable respectively. It is assumed 
that ( | ), 0,..., ( 1)   ck i k i NU is the control correction variables calculated 

from the time instant k forwards. During the SDMPC derivation, 
( | ), 0,..., ( 1)   ck i k i NU are obtained as the results of solving the QPP 

numerically. 
 
Accordingly, the control variables ( | ), 0,..., ( 1)  ck i k i NU over the next cN

steps can be obtained by using the control correction variables. The control 
prediction model (CPM) in the prediction horizon is given by 

1

0

( | ) ( | ) ( 1)




     
cN

i

k i k k i k kU U U                 (22) 
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Assuming ( )c kU and ( ) c kU as the column vectors including the predicted 

control inputs and control correction variables respectively in which the 
parameter k denotes that these values are computed from the time instant k
forwards. The expressions can be given by 

( | )

( )

( 1| )

 
   
   

c

c

k k

k

k N k

U

U

U

    
( | )

( )

( 1| )

 
    
    

c

c

k k

k

k N k

U

U

U

        (23) 

 
3.1.2 Prediction of the States 
 
Based on the recursive Eq. (19) and the CPM Eq. (22), the system states 
expressed by the predicted control inputs ( | ) 0,..., ( 1),  ck i k i NU could be 

computed by 
1 2( | ) ( ) ( )      j j j

ck j k k kX A X A A I BU          (24) 

Assuming ( )p
c kX and ( )ref

c kX as the column vectors including predictive states 

and reference states respectively in which the parameter k denotes that these 
values are computed from the time instant k forwards. The expressions can be 
given by 

( 1| )

( )

( | )

 
   
  

p
c

k k

k

k N k

X

X

X

         
( 1| )

( )

( | )

 
   
  


ref

ref
c

ref

k k

k

k N k

X

X

X
       

 (25) 

Although the states can be obtained using the predicted control column vector
( )c kU , the states recursive equations need to be transformed. This is primarily 

because the control correction variables are the direct results by solving the 
optimization problem, hence, the states recursive equations need to be 
transformed and expressed by ( ) c kU . However, due to  cN N , it is assumed 

that ( | ) 0  k i kU when ( 1)  cN i N . In other words, the predicted control 

variables ( | )k i kU in the horizon ( 1)  cN i N equal to the last predicted 

control variables in the prediction horizon ( 1| ) ck N kU . 

 
For the case 1  cj N , the states recursive equations expressed by the 

control correction column vector are given by 
1 1

0 0

( | ) ( ) ( ) ( ) ( 1)
 

 

 
      

 
 

cN j
j m m

c
m m

k j k k k kX A X A B B U A BU    (26) 

For the case ( 1)  cN j N , the states recursive equations are given by 
1 1

0 0 0

( | ) ( ) ( ) ( 1| ) ( ) ( 1)
  

  

 
          

 
  

c cN N N j
j m m m

c c
m m m

k j k k k k N k kX A X A B B U A B U A BU  (27) 

Finally, by integrating Eqs. (26) and (27), the state prediction model (SPM) 
expressed by the control correction column vector ( ) c kU in the prediction 

horizon N can be written as 
( ) ( )+ ( 1)+ ( )  p

c y ck k k kX X U G U              (28) 

where ( )p
c kX is a state column vector and 1 1

0 0 0

， ，
 

  

 
  
 

  
cj Nj j

j i i i
y

i i i

A A B G A B A B    . 
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+1

1
1

0
0

0

1

0

+

( 1| )

( | )
( )+ ( 1)

( +1| )

( | )













 
 

                                                  
  

 








  




  





c

c

Nc

c
Nc

N

N
i N

i
i

ic N
i

c i
i

N
i

i

k k

k N k
k k

k N k

k N k

B
B

AB B
AX

A B
A B B

AX
X U

X A BA
A

X A
A B



0

0

0

1

0 0

( | )

( 1| )+




 

 
 
 
 
 
                
 
 
 
 
  



 




  




c

c

y

N

c
i

N NN
i i

i i

k k

k N k

G

U

UB AB B

A B A B

(29) 

 
3.1.3 Cost Function 
 
The cost function for the SDMPC is designed to penalize the error between the 
predictive states and the reference states in the predictive horizon, while to 
minimize the fuel consumption in the control horizon. The cost function at the 
time instant k is given by: 

22 1

1 0

( | ) ( | ) ( | )


 

       
cNN

k ref
j i

J k j k k j k k i k
RQ

X X U       (30) 

whereQ is the state weighing matrix, R is the control weighting matrix, and

( | ), 1,..., ref k j k j NX is the reference trajectory of the state variables 

calculated at the time instant k . In order to ensure 0kJ , Q  is assumed to be 

a positive semi-definite constant matrix and R  is assumed to be a 
positive-definite constant matrix. Note that the weighting matrices Q  and R  
are closely related to the properties of the control results, and therefore need 
to be tuned in the numerical simulation to obtain a satisfactory performance. 
 
3.1.4 Transform the Optimal Rendezvous into QPP 
 
Then, the cost function (30) can be rewritten as 

2 2
( ) ( ) ( )   p ref

k c c cJ k k k
RQ

X X U                     (31) 

Define E as the auxiliary variables, and ( )kE calculated at the time instant k
can be obtained by 

( ) ( ) ( ) ( 1)   ref
ck k k kE X X U                                        (32) 

Note that ( )kE is a 1cN column vector and can be calculated as a constant 

vector at the time instant k . Transform the cost function into the following form 
by inserting (32) into (31) 

2 2

T T T

T T T T T

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( ) ( )

    

            
        

k y c c

c y y c c c

c y y c y c

J k k k

k k k k k k

k k k k k k

RQ
G U E U

U G E Q G U E U R U

U G QG R U E QG U E QE

  (33) 

Finally, the cost function can be simplified into the following form 
T T1

( ) ( ) ( )+
2

    k c c cJ k k k constU H U f U                 (34) 
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where T( ) y yH 2 G QG R ， T2 ( )  y kf G QE . As shown, the optimal rendezvous 

has been transformed into a standard QPP, and the solution of the QPP can 
be solved by using the Matlab in a fast manner. 
 

3.2. Constraints On the problem 
 

A series of practical control constraints that might be imposed in actual 
missions are considered. Therefore, the control inputs at any step should be 
sought to minimize the cost function over the prediction horizon while 
satisfying these constraints at the same time. 
 
3.2.1 Collision Avoidance through Tetrahedral Path Constraint 
 
Unlike previous research work, the light-of-sight (LOS) tetrahedral cone 
established here is assumed to protrude from the docking port, not the mass 
center of the target. The chaser spacecraft is required to remain within this 
region during the approaching process for relative position and attitude 
measurements by using vision-based navigation system. As is shown in Fig. 6, 
the tetrahedral region can be described mathematically as 

tan tan

tan tan

 

 

   

  
 

z

x

y

x

l

l

r

r

r

r

                                                  (35) 

where and  are the half cone angles along the z axis and the y axis 
respectively. Further, the inequalities above can be rewritten as 

( ) tan 0, ( ) tan 0

( ) tan 0, ( ) tan 0

 
 

     
      

x z x z

x y x y

l l

l l

r r r r

r r r r
                               (36) 

 

Finally, the LOS constraint equations are formulated as 
  s kA X L                           (37) 

where 
1

1 0 0 0 0
tan

1
1 0 0 0 0

tan
1

1 0 0 0 0
tan

1
1 0 0 0 0

tan









 
 
 

 
 

   
 
 
 
  

sA

                 

 
 
 
 





 

l

l

l

l

L
                                 (38) 

 

Expand ,sA L into  4 20= , s sA A 0 and 20

TT
1= ,   L L 0 to include the other state 

variables. Then, insert Eq. (37) into the state prediction model Eq. (19), then 
the inequality constraints become 

( ) ( ) ( 1)    p
y c cs s sk k kG U XL UA A A              (39) 
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X

Y

Z




cX

cY

cZ

eY
eZ

eX  
Figure 6. LOS Region Protrudes From the Docking Port of the Target 

 
3.2 Receding Horizon Optimization Strategy 
 
In this paper, the orbit and attitude maneuvering trajectory for the chaser 
spacecraft is composed of a sequence of locally optimal segments. At a certain 
time step, the reference states ( )ref

c kX will be predicted for the N future time 

steps based on the initial values. By solving the QPP, the control correction 
variables ( ) c kU are obtained, which could be used to predict the control inputs 

over the next cN steps. However, only a subset of these control input 

commands are actually implemented. Usually the applied subset is restricted 
to the first control input. Then, the extracted first control input is used to 
compute the new system states based on the SPM. Both the control input and 
new system states will be used as initial values for the next cycle. 

 

Figure 7. Flow diagram of the receding horizon optimization strategy 
 

4 Numerical Examples 
 
In this section, two rendezvous scenarios are given to show the validity and 
advantages of the proposed method. The simulations are conducted on a 
computer with a 2.0GHz dual-core CPU and 2.00 GB RAM by using Matlab. 
 
4.1 Three-axis Attitude Stabilized Target 
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The docking direction is assumed to point to the opposite direction of the 
target’s velocity. Hence, the chaser needs to rendezvous with the target along 
the V-bar direction. However, the LOS tetrahedral path constraint applied here 
is also suitable for approaching from the R-Bar and H-Bar direction. Please 
note that unlike most of the previous research, the start point of the chaser 
does not lie in the light-of-sight region and its extension. The objective of the 
control is to drive the chaser spacecraft approach the target along the fixed 
docking direction while to meet the light-of-sight constraint. 
 
The height of the target satellite is800km , the orbital rate is 0.001 /n rad s , and 
the total maneuver simulation time is 40 seconds. Through multiple simulations, 
the control horizon and prediction horizon are 20cN and 55N respectively. 

The weighting matrices are chosen to be: _0.01   N state numIQ ， _50  
cN ctrl numIR . 

The angles which determine the size of the tetrahedral cone are 30  ,
30   and the docking axis is assumed to be 3 meters long. The target and 

chaser spacecraft masses are 800.0 Kg and 400.0 Kg respectively. 
 

Table 1. Initial values for the five chaser satellites 
No. position(m) velocity(m/s) Quaternions Ang.V (rad/s) 
Sat 1 [-40, 5, -25 ] [ 0.5, 1, 3.5 ] [0.8602,0.1, 0.3, 0.4 ] [ -0.01, 0.05, 0.07 ] 

Sat 2 [ -40, 20, 10 ] [ 0.5, -4, -0.5 ] [ 0.5, -0.5, 0.5, -0.5 ] [ -0.02, 0.03, -0.09 ] 

Sat 3 [-40, 3, -5] [0.5, -3, 3] [0.1,0.4,0.5831,0.7 ] [ 0.06, -0.02, -0.03 ] 

Sat 4 [-40, -20, -15 ] [ 0.5, 3, -0.5] [-0.2,0.3,-0.5,0.7874 ] [ -0.02, 0.08, -0.05 ] 

Sat 5 [-40, -5, 20 ] [ 0.5, -0.4, -5 ] [0.2,0.3, 0.4, 0.8426 ] [ 0.05, -0.01, -0.03 ] 

 

 
Figure 8. Approaching a stationary target seen at the back of the target 

 

 
Figure 9. Approaching a stationary target seen at the front of the target 
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Figs.8 and 9 illustrate the optimized approaching trajectory from the V-bar 
direction with safety constraints satisfied. While Figs. 10 to 14 show the 
relative motion states time histories of five chaser satellites. As could be seen 
above, the spacecraft is driven to approach the target along V-bar direction 
while satisfying the LOS constraint and the chaser finally enter into the LOS 
region which achieves a successful docking. 
 

    
Figure 10. Relative motion states of Sat 1 

 

   
Figure 11. Relative motion states of Sat 2 

 

  
Figure 12. Relative motion states of Sat 3 
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Figure 13. Relative motion states of Sat 4 
 

  
Figure 14. Relative motion states of Sat 5 

 
4.2  Tumbling Target 
 
The height of the target satellite is800km , and the corresponding orbital rate is

0.001 /n rad s , and the total simulation time is 35seconds. Through multiple 
simulations, the control horizon and prediction horizon are 20cN  and 

55N respectively. The weighting matrices were chosen to be: 

_0.01   N state numIQ ， _50  
cN ctrl numIR .The target is tumbling at a speed of

0.01 / p rad s , and the initial relative position and velocity are T
20,0,35 m

and T0.5,0.3, 0.5 / m s . The target and chaser spacecraft masses are 800.0 

and 400.0 Kg respectively. Note that the target's states are observed or 
estimated from measurements carried out by the chaser. 

 
Figure 15. Approaching a tumbling target 
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As can be seen from the pictures, the quaternions track the time-varying 
values closely and the angular velocity converges to the ideal angular velocity 
within less than 10 seconds. Meanwhile, the control torque is moderate and 
can be satisfied by the current reaction wheels or small-output thrusters. 
 

  
(a)                                 (b) 

     
(c)                                  (d) 

Figure 16. (a) Magnification of figure 15; (b) quaternions; (c) angular 
velocity; (d) control torque 

 
5 Conclusion 
 
The paper presents a 26-state model of a two-spacecraft rendezvous. The 
optimal control problems are formulated and addressed using the SDMPC 
control methods. Both scenarios of approaching a three-axis attitude stabilized 
target and a tumbling target are considered and the simulations are 
implemented. Moreover, the solutions obtained are verified numerically by 
using Matlab. The results obtained show the good performance of the SDMPC. 
It is also found that path constraints are necessary when solving for the optimal 
trajectory in order to prevent undesired collision of the spacecraft. 
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