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Abstract: This paper mainly investigated the baseline variation during the station 

keeping of the InSAR tethered satellites system. A. Moccia made a study of the 

relationship between the wavelength and the baseline length. The effect of the 

dynamics of the system on the baseline needs to further research. A lumped massed 

model was used when researching the motion of the system during the station keeping. 

The dynamic equations could be derived through Newton-Eular laws. Then the 

baseline expression made up by the state parameters of the system was given. The 

results showed that the in-plan vibration and the out-plan vibration are the 

quasi-periodic motion and the amplitudes mainly determined by the initial parameters. 

The tether’s shape was a curve whose curvature was changing along with time. The 

deviation between the mid of the instantaneous tether and the intermediate of the line 

from the mother-satellite to sub-satellite altered but the magnitude was pretty small. 

The tether flexibility has little effect on the baseline variation; however it is mainly 

determined by the in-plane vibration. From the numerical results, the conclusion that 

the satellites formation using space tether is a steady platform for the InSAR 

technology would be got. 

 

Keywords: InSAR tethered satellites formation, station keeping, lumped massed 

model, baseline variation. 

 

1. Introduction 

 

The concept of Tethered Satellite System (TSS) was put forward by Colombo et al. [1] 

in 1974, which evolved from the idea of Tsiolkovsky about the possibility of using a 

high tower from the equator to the geosynchronous altitude to escape the Earth’s 

gravity [2]. Several missions were conducted in 1990s to verify the TSS concept and 

these missions proved the feasibility and survivability of TSS [3,4]. Meanwhile the 

dynamics and control of TSS were studied and a significant progress has been made 

[5,6,7]. The stability of the system was analyzed and different kinds of control 

methods were put forward during the different phases of the system [8,9,10]. Various 

applications of the TSS were put forward such as orbit transfer, formation flying, and 

artificial gravity and so on as the Ref [2] described. 

 

The InSAR tethered satellites system was proposed by Antonio Moccia in 1986 [11]. 

He applied the tethered satellites technology into the height measurement with SAR 



technology, which has a great progress and real product [12,13]. In his paper [14], he 

proved the tethered InSAR satellites system could be feasible in height measurement. 

Compared to the separated InSAR satellites system, it has an advantage on the fuel 

consumption for the reconfiguration of the formation could be seen as a unit when the 

system needs an orbital maneuver. The long and variable baseline make the InSAR 

tethered satellites system more promising as well. A. Moccia investigated the 

feasibility of the system and studied the relationship between the wavelength and 

baseline length. Therefore the effect of the dynamics of the system on the baseline 

need to further research. And the dynamics and control for tethered formation for 

space interferometry also were discussed in [15,16,17]. 

 

This paper mainly investigated the baseline variation during the station keeping of the 

InSAR tethered satellite system. When the dynamic equations of the system were 

derived, the lumped massed model was used. The shape of the tether was analyzed 

during this phase with different initial parameters. Then the baseline was expressed 

with the parameters of the system to analyze the influence of the parameter variation 

on the baseline. 

 

This paper contains three parts. The first part is the introduction of the InSAR tethered 

satellites system. The second part describes the model of the system, baseline 

expression and numerical simulation of the InSAR tethered satellites system during 

the station keeping. The third part is the conclusion. 

 

2. The Dynamic Model of The System  

 

2.1. The TSS Model 

 

The tethered satellites system is a complex system which could cause the attitude 

coupling. The system is disturbed by different kind of perturbations such as the solar 

radiation, the gravitation of the moon and the thermal effect of the tether. Compared 

to the tethered satellites, the InSAR tethered system has a shorter tether and is more 

flexible. Some assumptions are made to simplify the system. 

1) The orbit of the mass center of system is Keplerian orbit. 

2) The tether is a rigid rod. 

3) The attitudes of the satellites keep relatively stable during the deployment. 

 

The tethered satellites system could be seen in Fig. 1. 

 



 

Figure 1. The tethered satellites system model 

 

Newton-Eular law is used when deducing the dynamic equations. Three coordinates 

systems are used, the inertial coordinate o o oX Y Z , the orbit coordinate system XYZ  

fixed on the mass center and the line-of-sight frame xyz . The transfer matrix from xyz  

to XYZ  is C . 
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  and   are the first and second rotational angle relatively, and the in-plane and 

out-plane vibration angles as well. 
 

The angular velocity and the angular acceleration of the frame xyz  are as following.  
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  is the mean orbital angular velocity of the mass center. 
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   is the argument of latitude of the mass center. R  is the mean radius of the earth 

and oR  is the instantaneous distance from the mass center to the geocenter. 
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i  is the orbit inclination angle of the system. w  is the argument of perigee.   is the 

true anomaly of the system. 

 

The position vector of the tether in the inertial frame is r . The position vector of 

mother-satellite and sub-satellite are 
mR  and 

sR  relatively. The acceleration of the 

tether could be presented as following in inertial coordinate. 
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Describe r  in the xyz  coordinate. 
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After getting the kinetic equations of the tether, the Newton-Eular law is used to get 

the dynamic equations. The force analysis could be seen in Fig.  2. 
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Figure 2. The force analysis of the system 

The mother-satellite’s dynamic vector description is as follow. 
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2 22

22

3( )
[ ] 1 ( ) (3sin 1)

2o m m m

RJu

R R M M


 
        

 

o mo o m
m o mo

o

R R R FT
R R R

R
  (9) 

 

In a similar way, the sub-satellite’s dynamic equations could be also derived. 
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In the above equations, T ，
mF ，

sF  are the tether tension, the atmospheric drag of 

the mother-satellite and sub-satellite relatively. 

The atmospheric drag of the sub-satellite could be described by
sF . 
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s  is the velocity of the sub-satellite. In the orbit coordinate, s  is presented as 

follow. 
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  is the orbital velocity of the mass center. l  is the instantaneous length of the 

tether. 

 

So the dynamic equation of the tether could be got. 
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Unfold the equation in the orbit frame. 
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The above equations are the dynamic model of the system, from which it could be 

known that the system is highly nonlinear and coupling. Also, it is clear that the tether 

tension T  is unknown. So it could be the control variable when deploying the 

system. 

 

2.2. The expression of the baseline 

 

Figure 3 shows the spatial geometric model of the InSAR tethered satellite system 
which is attributed to deduce the relationship between the baseline and the station 
parameters of TSS. The baseline vector B  is from the antenna center mounted on 

the base-satellite to the antenna center fixed on the sub-satellite. ,x yB B  and zB  are 

the projected line-segment on the line-of-sight frame axis of the baseline vector. 

According to the Ref. [18], the spatial baseline of the system is restricted by 
yB  and 

zB . The spatial baseline of system nB  could be expressed as follow: 

 

 cos sinn z yB B B     (15) 

 

In the Eq. 15, the variable α is the visual angle of antenna. 

 

The baseline vector could vary if the TSS model changes, for example, the baseline 

vector of rod model is different from lump massed model. In the paper, lump massed 



model is used when deducing the dynamic of TSS. Hence the baseline vector could 

be expressed as Eq. 16. 
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In the Equation 16 n  is the segment number of the tether. iL L n  , L   is tether 

length.  

 
Figure 3. The baseline of the InSAR tethered satellite system 

 

3. The Numerical Simulation 

 

3.1. The numerical simulation of the tether flexibleness 

 

The numerical simulations were conducted with different groups of initial parameter 
consisting of in-plane angle and out-plane angle to compare the effect caused by 
tether flexible with the motion affected by initial station. There are three groups initial 
parameter including different in-plane angles and out-plane angles. The in-plane 

angle and out-plane angle change from zero to 10°.  

 
The system parameters used in simulation as follow: the base-satellite mass is 
300kg , sub-satellite mass is 100kg , orbital altitude of TSS mass center is 200km , 

the frontal area of base-satellite and sub-satellite are 22m  and 21m  respectively, the 

orbit inclination angle is 51.6 , the visual angle of antenna is 35.7 , the tether length 

2000L m  and the number of beads is 10. 

 
The first group of initial parameters is 0   . Under the circumstance, the tether 

flexibility could be clearly seen with the Fig. 4 and Fig. 5. And the numerical results of 
this condition could be seen from Fig. 4 to Fig. 7. 
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Figure 4. The In-plane angle variation of the different beads 

 

Figure 5. The Out-plane angle variations of the different beads 

 
Figure 6. The tether shape variation 

 
Figure 7. The deviation of mid-tether 

 

These four pictures show the tether flexibility during the station keeping. Fig. 4 

presents the in-plane angle of different beads. All the beads move similarly except the 

first bead. The frequency of the first bead is faster than others, which may be caused 

by the atmospheric drag, but not confirm. Basically, the amplitude of the beads is 

decreased along the increase of the distance from the bead to the base-satellite. And 

this is accordant with the Fig. 6. From the Fig. 6, the conclusion could be got that the 

tether is forward convex when the sub-satellite is before the base-satellite. Contrarily, 

the tether is backward convex when the sub-satellite moves behind the base-satellite 

in the orbital plane. Fig. 5 describes the out-plane angles of all beads keep zeroes. 

And Fig. 7 represents the deviation of mid-tether from the line connecting the 
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base-satellite and the sub-satellite. The amplitude of the deviation is very small, less 

than 0.013m. 

 

The second group of initial parameters is 10 , 0   . By changing the initial in-plane 

angle to investigate that if the initial angles have an effect on the bend degree of the 
tether. And the numerical results of this condition could be seen from Fig. 4 to Fig. 7. 

 

 
Figure 8a. the in-plane angle variation of different beads 

 
Figure 8b. The first augment of 

in-plane angle  

 
Figure 8c. The second augment of 

in-plane angle 

 

The three pictures above shows the in-plane variation when initial in-plane angle isn’t 

zero. The motion of beads is mainly affected by the initial condition. The in-plane 

angles of all beads change almost the same, but a little different which could be seen 

from the augment pictures Fig. 8b and Fig. 8c. Through the latter two graphs it could 

be known that the tether flexibility also has influence on the system’s motion. 

 

 

Figure 9. the out-plane angle variation of different beads 
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Figure 10. The tether shape variation 

 

Figure 11. The deviation of mid-tether 

 

Figure 9 shows the variation of out-plane angle keeping the same with the first 

circumstance. Fig. 10 proves the tether still bends like the first condition, forward 

when sub-satellite is before the base-satellite and backward when sub-satellite runs 

behind the base-satellite.  Fig. 11 shows the deviation of the mid-tether is also small, 

but much bigger than the first circumstance. 

 

After altering the in-plane angle from 0 to10 , the initial value of out-plane angle also 

is changed to10 . We know the in-plane motion is decided by the initial in-plane angle. 

Now the out-plane motion is simulated with the initial values = =10   . The numerical 

simulation result of this condition is from Fig. 12 to Fig. 15. 
 

 

Figure 12a. the in-plane angle variation of different beads 

 
Figure 12b. the first augment of 

in-plane angle 

 
Figure 12c. the second augment of 

in-plane angle 
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Figure 13a. the out-plane angle variation of different beads 

 
Figure 13b. the first augment of 

out-plane angle 

 
Figure 13c. the second augment of 

out-plane angle 

 

Figure 14. The tether shape variation 

 

Figure 15. The deviation of mid-tether 

 

The in-plane angle variation is very similar with the out-plane angle variation 

excluding that the vibration frequency of out-plane is larger than that of in-plane.  

And the angle variations of all beads are different because of the tether flexibility; 

however, it is negligible compared to the vibration caused by initial angles according 

to the Fig. 12 and Fig. 13.  

 

The tether still bends like before mentioned in the orbital plane. But in perpendicular 

plane the tether curves forward when the out-plane angle is larger than zero, which is 

similar with the in-plane motion. Fig. 15 shows that the deviation of mid-tether is 

mainly affected by in-plane angle.  

 

The numerical simulation shows that the system motions is mainly affected by the 

initial angles of in-plane and out-plane. The tether is not a line for the tether flexibility, 
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but the effect on the motion caused by tether flexibility is insignificant compared to the 

motion caused by initial angles. 

 

3.2. The Baseline Variation Simulation 

 

The baseline could be expressed as Eq. 16. Then the simulation of baseline variation 

was conducted to figure out the effect of system station and tether flexibility on the 

baseline variation. The parameters used are the same with before. The numerical 

results are from the Fig. 16 to Fig.20. 

 

 
Figure 16. the baseline variation with 

zero initial angles 

Figure 17. the baseline variation when 

in-plane angle is not zero 

 
Figure 18. the baseline variation when 

out-plane angle is not zero 

 
Figure 19. the baseline variation when 

angles both not zero 

 

Figure 20. the comparison of three conditions 
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The first four pictures describe the baseline variation using different models with three 

conditions. The blue presents the rod model and red represents the beads model 

which could take account of the tether flexibility. These four pictures prove that 

comparing to system station the tether flexibility has little effect on the baseline 

variation during the station keeping. However, the baseline variation when the 

in-plane and out-plane are both not zero is more similar with the condition of zero 

out-plane angle. From Fig. 16, it could be seen that the tether flexibility still has effect 

on the baseline variation. The variation frequencies of two models are close and the 

amplitude of bead model is higher because of the tether flexibility. But when there is 

vibration of the system, the baseline variation is mainly affected by the vibration 

caused by initial angles. 

 

It is clearly that baseline variation between Fig. 17 and Fig. 18 is different. But the Fig. 

19 looks like Fig. 17. To further investigate the condition, these three circumstances 

are compared in Fig. 20 using the beads model. When in-plane angle is zero, the 

baseline varies in a narrow scope, which is insignificant when the in-plane angle 

equals the out-plane angle. Therefore, the variation when both angles are not zero is 

different with another curve indicating the variation when out-plane is zero. So the 

baseline variation is related to all these factors, but mainly the in-plane vibration. 

 

4. Conclusion 

 

After deriving the dynamics of the InSAR tethered satellite system, some findings 

about the system’s motion and baseline variation were made through the numerical 

simulation. The in-plan vibration and the out-plan vibration are the quasi-periodic 

motion and the amplitudes mainly determined by the initial parameters. The tether’s 

shape is a curve whose curvature changes along with time, but the magnitude is 

pretty small. And the system motions are mainly affected by the initial angles of 

in-plane and out-plane. Moreover, the effect on the motion caused by tether flexibility 

is insignificant compared to the motion caused by initial angles. The tether flexibility 

has little effect on the baseline variation; however it is mainly determined by the 

in-plane vibration. 

 

But the model used in the paper differs from the real system; a flexible model may get 

more accurate results compared to the lumped mass model. In this paper, only 

relationship between the baseline and the system parameters was investigated. But 

how to adjust the baseline and design of the InSAR tethered satellite system need to 

further research.  
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