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» Formation flying is an enabling technology. Electromagnetic
Formation Flying (EMFF) uses HTS coils to provide forces and
torque, in exchange of a highly coupled and nonlinear dynamics
model.

» The coupling effects:

e Both magnitude and orientation of the Electromagnetic (EM)
force is determined by magnetic dipole strength and relative
DOF of the array.

e When a shear EM force acts, a shear torque is introduced.
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> Far-Field Model

e EM force
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> Four-Satellite Planar Formation

e Assuming that the distribution of the four-satellite planar

formation on the General Circular Orbit (GCO) is symmetrical
with respect to the origin of the LVLH coordinate.

Assuming that the equivalent magnet moment and maneuver
trajectories are rotational symmetrical, satellites under similar

dynamical circumstance are accordant to each other and can be
handled in chorus.
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» Four-Satellite Planar Formation
F, = FA(/UA’ INTZAN QA)
u, . the dipole strength;
a,: the deflection angle of dipole moment in the local frame;
ry : the radius of transition orbit; g, : the phase angle in GCO.

Fig 3. Ideal scheme for relative orbit transfer
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> Relative Translational Dynamics

r=Ar+A,r+a
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» Relative Rotational Dynamics
* Describing it in the it" deputy satellite’s body-fixed frame.
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where T, =(T, +T,)-IA I (T, +T,) , defined as the equivalent
combined control moment. It contains EM torque and RWs
moment acted on both satellites and can be optimized to
allocate the angular momentum.

e The coupling among EMFF is reflected implicitly in the
connection between EM force and torque.
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» 6-DOF Relative Dynamics Model
e Selecting x=[r".q,]'and u=[a",T,']'as state and control
variables.

X =g(x,x)+Cu
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» Optimal Trajectory Generation Using Legendre
Pseudospectral Method

e The optimal control problem of trajectory generation is
transformed into constrained Non-Linear Program (NLP) through
the pseudospectral method and solved through correspondent
numerical algorithm.
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» Optimal Control Problem
* State equation:

N t, —t
> Dyx, —%F(XN(tk),uN(tk),tk;tO,tf) =0,k=0,12,...,N

i=0

e Control constraints: including constraints on control output, path,
energy matching, configuration and bound conditions.

e Cost Function: for the demand of relative translational control,
AMM optimization problem and control output.
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» Optimal Control Problem
e The general control problem

minJ=J,.. +J. +Ja
Subject to:
Equality constraints :
Dynamics: {Y(T) =X()
v(zr) =g(x,v,7)+C(x,7)u(r)
Enenrgy matching: h,(x(z,),7,) =0
. Configuration: h,(x(z;),7,) =0
Initial and terminal conditions: {hO(X(TO)' %) =0
h: (X(z;),7:)=0
Inequality constraints :
Control output: 9,(x(z),u(r),7) =0
Anti-"stuck" conditions: d,(x(z),u(r),7) =0
I Collision avoidance: d;(X(z),u(z),z) >0
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» Numerical Computation Method

 The integrated DFP, is applied. A switch of original DFP and BFGS
can reach higher accuracy and faster convergence rate under
reduced computation complexity.
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Fig 4. The procedure for solving the NLP

National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University 13



‘ 2. EM Dynamics ‘ 3. 6-DOF Dynamics 4. LPM w

» Simulation Results

e The formation reconfigures for the purpose of transferring to
another relative orbit while keeping the square configuration.
The initial and terminal phase angles, /S and £;, are not fixed in
avoidance of extreme control.

e The initial and terminal relative nominal trajectory:

e

(xi =5sin(nt+ ) X; =5sin(n t+ ;)
y; =10cos(nt+ £,) y. =10cos(n.t+ 5;)
“ :5\/§sin(nit+,8i) | Zy :5x/§sin(nft+,8f)

N\
.

e Parameters:

Mass of satellite (kg) 250 E{kar:;us of initial reference orbit 7200

Radius of terminal reference
.m?2
| (kg:m?) 160 orbit (km) 7200

Maximum magnet moment

Radius of initial GCO (m) 10 (H/m)

81250

Radius of terminal GCO

(m) 5 Maximum RW torque (N-m) 1
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> Simulation Results

Four-Satellite Relative Motion in Local Frame

Fig 6. Relative motion of four-satellite planar reconfiguration
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> Simulation Results
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Fig 5. State and control results of satellite A
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> Future work

The simulation results indicate that the initial and terminal

conditions will affect the convergence rate and selection of
parameters can influence the precision of simulation.

A series of algorithm with high fidelity and fast convergence rate
can be applied to similar optimal control problem.
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Thanks for your attention |

Any question can be forwarded directly into
Chenjing@mail.nwpu.edu.cn
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