OPTIMAL CONTROL OF 6-DOF ELECTROMAGNETIC FORMATION USING THE LEGENDRE PSEUDOSPECTRAL METHOD

Jing Chen, Xiaokui Yue

National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University
<table>
<thead>
<tr>
<th>1. Introduction</th>
<th>2. EM Dynamics</th>
<th>3. 6-DOF Dynamics</th>
<th>4. LPM</th>
<th>5. Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 EM Dynamics</td>
<td>Far-field Model</td>
<td>Four-Satellite Planar Formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 6-DOF Dynamics</td>
<td>Relative Translational Dynamics</td>
<td>Relative Rotational Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Legendre Pseudospectral Method (LPM)</td>
<td>Optimal Control Problem</td>
<td>Numerical Computation Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University
 Formation flying is an enabling technology. Electromagnetic Formation Flying (EMFF) uses HTS coils to provide forces and torque, in exchange of a highly coupled and nonlinear dynamics model.

- The coupling effects:
 - Both magnitude and orientation of the Electromagnetic (EM) force is determined by magnetic dipole strength and relative DOF of the array.
 - When a shear EM force acts, a shear torque is introduced.
Far-Field Model

- **EM force**

\[
F_{ij} = \frac{3\mu_0}{4\pi} \left[-\frac{5(\mu_i \cdot r_{ij})(\mu_j \cdot r_{ij})}{r_{ij}^7} \right] + \left(\frac{\mu_i \cdot r_{ij}}{r_{ij}^5} \right) \frac{\mu_j}{r_{ij}^5} + \left(\frac{\mu_j \cdot r_{ij}}{r_{ij}^5} \right) \frac{\mu_i}{r_{ij}^5} + \left(\frac{\mu_i \cdot \mu_j}{r_{ij}^5} \right) r_{ij}
\]

\[
F_{ji} = -F_{ij}
\]

- **EM torque**

\[
T_{eij} = \frac{\mu_0 \mu_i}{4\pi} \times \left[\frac{3r_{ij}(\mu_j \cdot r_{ij})}{r_{ij}^5} - \frac{\mu_j}{r_{ij}^3} \right]
\]

\[
T_{eji} = \frac{\mu_0 \mu_j}{4\pi} \times \left[\frac{3r_{ij}(\mu_i \cdot r_{ij})}{r_{ij}^5} - \frac{\mu_i}{r_{ij}^3} \right]
\]
Four-Satellite Planar Formation

- Assuming that the distribution of the four-satellite planar formation on the General Circular Orbit (GCO) is symmetrical with respect to the origin of the LVLH coordinate.

- Assuming that the equivalent magnet moment and maneuver trajectories are rotational symmetrical, satellites under similar dynamical circumstance are accordant to each other and can be handled in chorus.
Four-Satellite Planar Formation

\[F_A = F_A(\mu_A, r_A, \alpha_A, \theta_A) \]

- \(\mu_A \): the dipole strength;
- \(\alpha_A \): the deflection angle of dipole moment in the local frame;
- \(r_A \): the radius of transition orbit; \(\theta_A \): the phase angle in GCO.

Fig 3. Ideal scheme for relative orbit transfer
Relative Translational Dynamics

\[\ddot{r} = A_1 r + A_2 \dot{r} + a \]

where

\[
A_1 = \begin{bmatrix}
\dot{\phi}^2 + 2 \frac{\mu}{r_1^3} & \dot{\phi}^2 & 0 \\
\dot{\phi} & \dot{\phi}^2 - \frac{\mu}{r_1^3} & 0 \\
0 & 0 & \frac{\mu}{r_1^3}
\end{bmatrix}
\]

\[
A_2 = \begin{bmatrix}
0 & 2\dot{\phi} & 0 \\
-2\dot{\phi} & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

- Both state and control vector need to be normalized to guarantee same magnitude.
Relative Rotational Dynamics

• Describing it in the i^{th} deputy satellite’s body-fixed frame.

\[
\begin{bmatrix}
\ddot{q}_0 \\
\ddot{q}_v
\end{bmatrix} = \begin{bmatrix}
-\frac{1}{4}(\omega^T\omega)q_0 - \frac{1}{2}q_v^Tf - \frac{1}{2}q_v^T\Gamma^{-1}T_A \\
-\frac{1}{4}(\omega^T\omega)q_v + \frac{1}{2}Q_v f + \frac{1}{2}Q_v^T\Gamma^{-1}T_A
\end{bmatrix}
\]

where $T_A = (T_{ei} + T_{ci}) - IA_{ic} \Gamma^{-1}(T_{ec} + T_{cc})$, defined as the equivalent combined control moment. It contains EM torque and RWs moment acted on both satellites and can be optimized to allocate the angular momentum.

• The coupling among EMFF is reflected implicitly in the connection between EM force and torque.
6-DOF Relative Dynamics Model

- Selecting \(x = [r^T, q_v^T]^T \) and \(u = [a^T, T_{\Delta}^T]^T \) as state and control variables.

\[
\ddot{x} = g(x, \dot{x}) + Cu
\]

\[
B_1 = -\frac{1}{4}(\omega^T \omega)q_v + \frac{1}{2}Q_vf \\
B_2 = \frac{1}{2}Q_v I^{-1}
\]

\[
g(x, \dot{x}) = \begin{bmatrix} A_1r + A_2\dot{r} \\ B_1 \end{bmatrix} \\
C = \begin{bmatrix} I_{3\times3} & 0 \\ 0 & B_2 \end{bmatrix}
\]
Optimal Trajectory Generation Using Legendre Pseudospectral Method

- The optimal control problem of trajectory generation is transformed into constrained Non-Linear Program (NLP) through the pseudospectral method and solved through correspondent numerical algorithm.
Optimal Control Problem

- **State equation:**
 \[
 \sum_{i=0}^{N} D_{ki} x_i - \frac{t_f - t_0}{2} F(x^N(t_k), u^N(t_k), t_k; t_0, t_f) = 0, k = 0, 1, 2, \ldots, N
 \]

- **Control constraints:** including constraints on control output, path, energy matching, configuration and bound conditions.

- **Cost Function:** for the demand of relative translational control, AMM optimization problem and control output.
 \[
 J_{\text{trans.}} = \min(T_f - T_0)
 \]
 \[
 J_{\text{rot.}} = \min \sum_{i=1}^{N_{\text{sat}}} T^T c_i W_{T_i} T c_i
 \]
 \[
 J_{\text{ctl.}} = \min \sum_{i=1}^{N_{\text{sat}}} \sum_{k=1}^{N} [\mu_i(t_{k+1}) - \mu_i(t_k)]^T W_{\mu_i} [\mu_i(t_{k+1}) - \mu_i(t_k)]
 \]
Optimal Control Problem

- The general control problem

\[\min J = J_{\text{trans.}} + J_{\text{rot.}} + J_{\text{cyl.}} \]

Subject to:

Equality constraints:

Dynamics:

\[\begin{cases}
 v(\tau) = \dot{x}(\tau) \\
 \dot{v}(\tau) = g(x, v, \tau) + C(x, \tau)u(\tau)
\end{cases} \]

Energy matching:

\[h_1(x(\tau_f), \tau_f) = 0 \]

Configuration:

\[h_2(x(\tau_f), \tau_f) = 0 \]

Initial and terminal conditions:

\[\begin{cases}
 h_0(x(\tau_0), \tau_0) = 0 \\
 h_f(x(\tau_f), \tau_f) = 0
\end{cases} \]

Inequality constraints:

Control output:

\[g_1(x(\tau), u(\tau), \tau) \geq 0 \]

Anti-"stuck" conditions:

\[g_2(x(\tau), u(\tau), \tau) \geq 0 \]

Collision avoidance:

\[g_3(x(\tau), u(\tau), \tau) \geq 0 \]
Numerical Computation Method
• The integrated DFP, is applied. A switch of original DFP and BFGS can reach higher accuracy and faster convergence rate under reduced computation complexity.

Fig 4. The procedure for solving the NLP
Simulated Results

- The formation reconfigures for the purpose of transferring to another relative orbit while keeping the square configuration. The initial and terminal phase angles, β_i and β_f, are not fixed in avoidance of extreme control.

- The initial and terminal relative nominal trajectory:

\[
\begin{align*}
 x_i &= 5\sin(n_i t + \beta_i) \\
 y_i &= 10\cos(n_i t + \beta_i) \\
 z_i &= 5\sqrt{3}\sin(n_i t + \beta_i) \\
 x_f &= 5\sin(n_f t + \beta_f) \\
 y_f &= 10\cos(n_f t + \beta_f) \\
 z_f &= 5\sqrt{3}\sin(n_f t + \beta_f)
\end{align*}
\]

- Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass of satellite (kg)</td>
<td>250</td>
</tr>
<tr>
<td>Radius of initial reference orbit (km)</td>
<td>7200</td>
</tr>
<tr>
<td>I (kg·m²)</td>
<td>160</td>
</tr>
<tr>
<td>Radius of terminal reference orbit (km)</td>
<td>7200</td>
</tr>
<tr>
<td>Radius of initial GCO (m)</td>
<td>10</td>
</tr>
<tr>
<td>Maximum magnet moment (H/m)</td>
<td>81250</td>
</tr>
<tr>
<td>Radius of terminal GCO (m)</td>
<td>5</td>
</tr>
<tr>
<td>Maximum RW torque (N·m)</td>
<td>1</td>
</tr>
</tbody>
</table>
Fig 6. Relative motion of four-satellite planar reconfiguration

r_i=10, r_f=5
Simulation Results

Optimal maneuver time: 151.78 seconds.

Fig 5. State and control results of satellite A
Future work

• The simulation results indicate that the initial and terminal conditions will affect the convergence rate and selection of parameters can influence the precision of simulation.

• A series of algorithm with high fidelity and fast convergence rate can be applied to similar optimal control problem.
Thanks for your attention!

Any question can be forwarded directly into Chenjing@mail.nwpu.edu.cn