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Abstract:  Formation flying is described as harnessing and exploring the 
dynamics of relative motion of satellites. Relative motion is brought in this paper 
for low earth orbiting satellites. This accommodates oblate and effects of other 
perturbations. Geometric approach is used to capture the secular relative 
dynamics.  A simplified guidance is brought out that is valid for larger separations 
and maintaining a bounded  formation for extended durations. Onboard autonomy 
is achieved for this duration eliminating ground constraints. The guidance along 
with impulsive maneuvers once or twice helps to realise orbit control of the 
formation.  The relative motion is illustrated by simulation for a PCO type 
formation in the presence of all perturbations. 
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 1. Introduction 

Polar Satellite Launch Vehicle (PSLV) has an enviable record in accurately 
launching multiple satellites in polar orbits.  These include small satellites from all 
over the world with optical, microwave and radar payloads.  Formation flying 
technologies has been identified among ISRO’s advanced R&D plans. Here it 
may be noted that this technology means development of inter-satellite 
communication, formation guidance and satellite orbit control.  The mission 
scenario is based on the type of payload the satellite carries, the power 
requirements and data generated onboard the satellite. The satellites are identical 
in their ballistic coefficients.  

Formation flying enhances the science in the presence of baseline observation 
and also the coverage durations. It brings out a gradual decay in mission 
fulfillment apart from redundancies. Optimal formation operations are possible by 
interchanging the satellite positions to enable equal fuel utilization. 

Maintaining close formations is not easy from control point of view. Large 
separations enhance wide  baseline for payload measurements. However most 
the relative dynamics models are valid for linear range that is close formations. 
Geometric approach [1] is ideal for it does not have any restriction on separation 
distances.  

Formation is either in open loop or in closed loop. Open loop means realizing 
formation with ground control commands. Whereas the closed loop enables 
automation and ground intervention is significantly reduced.  Automation also 
eliminates visibility constraints. This mission goal is being addressed in this paper 



regarding a plan for guidance. Relative dynamics is the guidance and engineering 
goal, when the satellite formation is in active control. 

The Clohessy-Wiltshire (C-W) Hills equations considers  relative dynamics when 
the chief satellite or reference orbit has circular motion in constant earth gravity . 
This may not be reality for extended periods. For example when the perigee is not 
arrested, the oblate effect allows the growth in eccentricity. Hence the C-W model 
has limitations.  Besides the oblate earth effect there are other perturbations like 
the third body attraction such as moon or sun attraction, solar radiation pressure 
and atmospheric drag effects. These effects are 1000 times weaker than the 
oblate effect. Yet they contribute a secular variation when considering the  oblate 
effect alone.   

Satellites experience all the forces.  There are two types of corrections; one due 
to natural forces and other due to the formation control. Perturbation effects are 
insignificant for rendezvous for their separation gets closer and the differential 
effects are minimal.  On the other hand for formation flying this is not the case. 
Controlling the formation by having models that accommodate oblate effect alone 
can also cause more fuel loss.   This is more so when the formation is planned for 
an extended period. This is the salient aspect that is achieved in this paper. 

The outcome enables satellite in realising payload operations with more autonomy 
and  following schedules which are a function of time. 

2. Relative Guidance 

The relative dynamics model  usually resides with the deputy and this maintains 
the selected formation with respect to the chief satellite. The chief is passive. This 
logic applies to all the deputies in the formation.   

This section is made up of  two parts namely (1) Measurements Smoothing  and 
(2) Relative Dynamics 

2.1 Measurements Smoothing  

Satellite Position System (SPS) is  onboard  and provides position information 
with GPS data. The inter-satellite link is used to transfer raw measurements from 
one satellite to the other.   

This has certain noise and the derived  velocity is also unreliable.  Smoothing 
usually  refines the position and estimates velocity more accurately.  Navigation 
accuracy needs to be one order more accurate to the control box that is decided. 
That is if relative distances are to be maintained to the accuracies of 300m then 
the navigation system needs to be accurate to 30m.  

Continuous thrust type control constantly modifies the orbit and payload data 
collection.  A filter needs to be comprehensive to accommodate such continuous 
thrust and that this needs to be onboard.  Also continuous maneuver is possible 
only with low thrusters like ion thrusters where the power requirement is higher. 



Purely kinematic nature of estimation correcting latency is more suited for 
impulsive satellite control. Kinematic orbit determination (OD) does not use any 
model and relies on the measurements. This data could either be position or 
phase differences. The later can be very accurate and is possible when phase 
data  is available from the receiver.    

In this paper only the position data is available from the receiver.  The navigation  
system is invoked before the maneuver or  payload operations.  This greatly 
simplifies the onboard navigation and control. 

The position data is used and the batch filter is invoked [2].  The measurements 
are available at equal intervals of time and ‘n’ such measurements are used.  The 
spline is used for smoothing purposes and the regularisation by minimizing the 
functional:  

                          Ψ(f) = (1/(n-1))  (xi) – f(xi))
2   + α || f ’’ ||2                           (1)               

where Ў(xi) is the measurement and f represent the spline fit. It has to be noted 
that the regularisation parameter    α  is selected apriori based on the noise of the 
sensor in the position.  The regularisation approach ensures a refinement of the 
position data and enhances the accuracies of the velocity data in the presence of 
noise.  

When we use  the position data with  accuracies of 30m we arrive from the batch 
filter a velocity estimate better than 3m/sec.  Here the batch filter involves a part of 
matrix multiplication on the measured positions.  

                                                f =D  ў                                                          (2) 

Considering the specified epoch we need to consider only 4 rows and N 
measurements. This involves 12N floating point operations for all the three axes.  
With an additional 12 more operations we can determine the velocity at a 
specified epoch. This completes the OD.  As mentioned earlier these limited 
computations, say with n=9, are performed about a minute before the specified 
times on the orbit. This shall be clearer in the next section.  

2.2 Relative Dynamics 

Instantaneous orbit is called osculating orbit. This contains short, long and secular 
effects of the perturbation.  

It would not be fruitful to include short and long periods in the formation control.  
The short and long period of each satellite do not cause unbounded relative 
motion. These are more relevant in close proximity formations with limited mission 
life and with appropriate sensors, control systems and have continuous thrust 
facility.   There is a need to consider the secular variations in the mean motion. In 
fact mean motion is used to plan the imaging schedules.    



The smoothed position corresponds to the osculating. It needs a conversion to 
obtain the mean or averaged motion.  Instantaneous mean conversion for linear 
dynamics that is neglecting higher order eccentricity effects requires additional 
computational processes. This applies individual satellites.  In our paper we 
explore a possibility of avoiding this additional conversion within reasonable 
accuracies yet valid only at certain times in every orbit. 

Most of the relative motions start with CW equations solutions. This is in closed 
form with respect to time [1]. The use of time explicit solutions are more suited for 
satellites while dealing with orbits that are nearly circular.  Disadvantage of CW is 
that it assumes linearity in the baseline separation; that is the separation is small 
compared to the semi major axis.   Subsequent developments have considered 
reference orbit to have eccentricity [3] and also the oblate effect [4]. These 
continue the linearity constraint. Here a wealth of models, each having distinct 
and significant advantages are available and discussed in [1]. The geometric 
approach suggested in [5] is useful for it accommodates the oblate J2 effect 
without any linearity constraint. 

Let r1 {a1,e1,i1,Ω1,ω1,M1} and r2 {a2,e2,i2,Ω2,ω2,M2} represent the two 
satellites. We note that the satellites are from the same launch and hence the 
inclination i1 is very close to i2 like the semi-major axis.  

Before we go further we define the LVLH plane. Here the unit vector   x is along 
radial direction , z is along the angular momentum vector and y completes the 
triad. A  Projected Circular Orbit ( PCO ) formation is one wherein the projection of 
the relative orbit is a circle in the y-z plane.  A LEO satellite in PCO that is more 
useful by having a separation at the equator and is illustrated as: 

                                             

                                      Figure 1. Projected circular formation 

The first order secular perturbation that includes the oblate effect on the spherical 
earth, with equatorial radius R is [6]: 

r1 

r2 



 

                                      ω 1’ = (3/2) J2 (R
2/ p2) n{ (2- (5/2)sin 2 i1} t 

                                      Ω1’ = -(3/2) J2 (R
2/ p2)n (cos i1) t                                            

                                      M1’ = η t                                                                         

                                      η = n [ 1 +(3/2)(J2 R
2/p2) (1-(3/2) sin2i)(1-e2)/12]           (3) 

                                      n=  (1/a) 

                                      p= a(1-e2) 

 

Here the a1,e1 and i1 are the momenta elements do not exhibit secular variation 
over the duration ‘t’. Periodic variations are neglected.  This is applied to the 
second satellite also. Having obtained the orbital elements as a function of time; 
the relative dynamics expressed in the LVLH frame of the chief is as follows: 

 

                                       ∆x                                      1 

                                       ∆y       =  [ C1  C2T –I]       0                                        (4)                            

                                       ∆z                                      0 

 

Here the matrices C1 and C2 denote the transformation matrix relating the LVLH  
frame to the inertial frame and I is the identity matrix of size (3x3).  

The orthogonal matrix CT in general is (c and s denote cosine and sine functions) 

 

                     cΘcΩ – cisΩsΘ            -cΩsΘ  -   cisΩcΘ                 sisΩ                                                

                   sΩcΘ + cicΩsΘ               -sΩsΘ + cicΩcΘ                 sicΩ                 (5) 

                        sisΘ                                        sicΘ                           ci                     

 

After  certain mathematical manipulations we can get the actual relative motion 
as: 

 

 



                         ∆x = fx( i1,i2, ∆Ω , ∆Θ, Θ1) 

                         ∆y = fy(i1,i2, ∆Ω , ∆Θ, Θ1)                                                           (6) 

                         ∆z = fz (i1,i2 ∆Ω , ∆Θ, Θ2)       

 

where ∆Ω  and  ∆Θ are the differences in the  right ascensions of the ascending 
node of the two satellites and differences in the argument of the latitude of the two 
satellites. Further we have: 

                                  δ x = r2(1+∆x) – r1 

                                  δy  = ∆y r2                                            (7) 

                                  δz  = ∆z r2 

 

where δx,δy and δz are the mean position in the radial, along track and across-
track. We have used the secular variation of  the oblate effect. 

There is a secular variation( apart from the periodic variations ) when a full forced 
model is compared with the model describing the above J2 effect.  Here we 
propose to accommodate the secular variations alone in each of the satellite for 
one orbit  using: 

                                ωc 1 + Θc 1 = ω1 + Θ1 + s(t)               (8) 

That is the argument of latitude of the satellite 1 in  Eq (3) which  is (ω1 + Θ1), is 
corrected to match close to the argument of  latitude of the satellite from full 
forced model/exact  that is (ωc1 + Θc1) to a reasonable accuracy using the 
correction s(t). This shall become more clear from the simulation in the next 
section.  

 

We then use the  revised argument of latitude and then determine the relative 
orbit (6) and (7). This correction is realised onboard with minimal ground 
commands. The principle is to capture the along track secular deviation with 
respect to satellite experiences all forces. The correction can be kept identical for 
both the satellites within reasonable accuracies. The other periodic deviations of 
each satellite relative to other remain periodic and thus can be neglected. This 
enables the guidance being simplistic with minimal of ground intervention.  

Also by this approach at certain points of time in the orbit we have a match in 
positions that are close to the osculating orbit. It is at these points that the 
measurements enable relative positions. The correction in the LVLH frame is 
estimated using guidance and based on the deviations impulsive thrust operations 
are then  carried out. 



Out of plane variations have been avoided. Two reasons are (1) Out of plane 
deviations from J2,2 onwards have minimal secular effect over a day and  (2) The 
along track foot-print of any satellite constitutes its payload resolution while across 
track is mostly is inherent within the area or array sensor shared by the satellites  

 

3. Simulations 

The simulations carried out here shall adequately describe the relative dynamics 
mentioned in the previous section.  The satellites have a semi-major axis of 
7106.863kms, e= 0.00032 and i= 97.912 degrees. The longitude of the ascending 
node of Sat 1at the start is 204.997 degrees (differs to Sat 2 by 0.38 degrees) . 
The j2 motion described by (3) and the exact model [6] are obtained. The plot in 
Figure 2 describes the deviations in position between the full force model 
orbit/exact orbit  and that orbit which accounts only oblate effect. We notice the 
secular variations. The spacecraft  needs to control this from position and pointing 
aspects. Fuel is lost. 
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Figure 2: Position variation 

The deviation in the argument of latitude between the oblate and full forced model 
is obtained. Next, a  correction s(t) that makes the argument of latitude based on 
the oblate effect close to the argument of latitude  of the full forced model is found. 
This is carried out for both satellites for one orbit and as the satellites are not very 
far the corrections is averaged.  In this case the correction was 

                       s(t) =(0.00125) +  (0.000169)t + (-0.000001116 )t2                        (9) 

This correction is added at the end of each orbital period to the argument of 
latitude derived from (3). 



The figure 3 is the same position difference between full forced model and that 
which is obtained using Eqs (9) and (8). 
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Figure 3: Positional difference 

Absence of any secular drift is noticed while the periodic motion is less than 8kms. 
The periodic variations need not be corrected.  Selection of start time for deriving 
the correcting fit is the cause for the periodic nature not being identical. Also a 
match between the osculating and this corrected motion once in every orbit.  The 
motion over 1500 minutes corresponds to one day operations.     

The proposed orbital motion is seen to retain a PCO, using an initial condition in 
Figure 4. The projected distance along the yz plane in the LVLH axes is observed 
steady without periodic effects over a day. State Transition Matrix and initialization 
is pending. 
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                                                            Figure 4 

      

4. Conclusions 

Relative motion by geometric approach for LEO satellites that accommodates all 
perturbations is provided. A kinematic orbit determination is used to obtain the OD 
faster and accurately by using a simple batch filter. To arrest the along-track 
secular variation in the full forced motion with respect to the oblate earth motion, 
the argument of latitude is appropriately corrected.  This correction is extended to 
the subsequent orbits. Relative motion significantly captures the secular effects of 
all perturbations. At the start of each orbit the OD and guidance enables to 
estimate the extent of impulse maneuver required. It is shown that this can 
facilitate a direct use of the measurement. Simulation shows no unbounded 
variations. This  approach can be followed in deriving the state transition matrix, 
which is an ongoing activity. 
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