GNC challenges for heavy active debris removal using blow effect to process or de-tumble debris

P.BRUN - 29/05/2013

De-tumbling and processing by blowing Context of the study

- "Kessler cascade effect" : evolution of debris population in Low Earth Orbit will increase due to collisions of objects
- => The active removal of 5 to 10 debris per year from Low Earth Orbit would reverse this cascade effect
- Many initiatives to cover the subject of Heavy Active Debris Removal at Astrium level :
 - CNES OTV from 2010 on-going
 - ESA VAC project 2012
 - Astrium internal R&T HADR from 2012 on-going
 - CNES EASE 2013 on-going
- GNC design of the spacecraft mainly driven by capture mean
 - Rigid link (e.g. use of clamps / robotic arm)
 - Flexible link (e.g. use of harpoon / net / bag / tether gripper)
 - Contactless solution (e.g. use blowing effect)

De-tumbling and processing by blowing Context of the study

- Blowing effect = use of blow of thrusters existing in chaser propulsive architecture to process (modification of orbit) or de-tumble (modification of angular rate) a target => contactless method
- During the maneuver, a balance thruster is used to compensate the effect of the blowing thruster on the chaser
- The blowing effect can be either created by
 - a classical engine (e.g. Thrust = 220 N / Isp = 280 s)
 - or an electrical engine (e.g. Thrust = 0.1 N / Isp = 2500 s)
- Idea of the study is to have a "rule of thumb" to size mass to be allocated to such systems

29/05/2013 - 3

- Context of the study
- Description of the processing maneuver
- Description of the de-tumbling maneuver
- Estimation of consumption during maneuvers
- Application cases to a given architecture
- Conclusion

De-tumbling and processing by blowing Processing with blow effect

- The processing maneuver with blow : modifying the orbit of a target by blowing on it with particles generated by engines of the chaser.
 - From the chaser point of view, this maneuver consists of reaching a station keeping box with coordinates (δx +/- Xmean,δy,δz) in LVLH frame.
 - During this station keeping point, the blow direction should be constant with regard to LVLH attitude, oriented towards the aimed direction of DV

De-tumbling and processing by blowing Processing with blow effect

- Different scenarios for processing:
 - Controlled de-orbitation
 - Re-orbitation to graveyard orbit (2000 km altitude)
 - Uncontrolled de-orbitation (perigee at 500 km of altitude)

Scenario for target above	Re-orbitation	Re-orbitation	Re-orbitation
limit			
Scenario for target below	Controlled de-	Uncontrolled de-	Uncontrolled de-
limit	orbitation	orbitation	orbitation
Maximal DV budget	330 m/s	240 m/s	360 m/s
Hypothesis on the type of	Quasi impulsional	Quasi impulsional	Low thrust transfer
thrust	transfer	transfer	

De-tumbling and processing by blowing Processing with blow effect

- GNC attitude strategy due to long duration of processing (up to 1 year, in case of electrical propulsion) :
 - X direction of the vehicle constrained by aimed direction of the DV (+/- XLVLH)
 - Need of optimized attitude from power point of view
 - = > « Roll steering » attitude (need of 1 degree of freedom for solar arrays) :
 - Xvehicle (direction of blowing of the vehicle) has to be aligned with +/-XLVLH
 - Zvehicle is oriented to have Sun in {Xvehicle, Zvehicle} plane
 - Solar arrays are supposed to have degree of freedom around Yvehicle. As Yvehicle is
 perpendicular to the sun direction, the solar arrays can be oriented
 perpendicularly to the sun direction.

- Context of the study
- Description of the processing maneuver
- Description of the de-tumbling maneuver
- Estimation of consumption during maneuvers
- Application cases to a given architecture
- Conclusion

De-tumbling and processing by blowing De-tumbling using blow effect

- The de-tumbling maneuver with blow : modifying the angular rate of a target by blowing on it with particles generated by engines of the chaser.
 - From the chaser point of view, this maneuver consists of reaching a station keeping box in LVLH frame. The station keeping point is chosen to minimize consumption (intersection of XIvIh/YIvIh plane and rotation plane of the target):

 During this station keeping point, the attitude of the chaser should be correctly oriented towards the target.

Distance and orientation of the target wrt chaser during de-tumbling maneuver derived from OTV study

29/05/2013 - 9

De-tumbling and processing by blowing **De-tumbling using blow effect**

- GNC attitude strategy due to long duration of processing (up to 2 weeks, in case of electrical propulsion):
 - X direction of the vehicle constrained by aimed direction of the blow
 - Need of optimized attitude from power point of view

=>Attitude derived from "roll steering" attitude (need of 1 degree of freedom for solar arrays)

- $X_{vehicle}$ (direction of blowing of the vehicle) is perpendicular to direction of rotation **N** of the target and oriented to form an ε angle with station keeping point location line.
- $Z_{vehicle}$ oriented to have Sun in { $X_{vehicle}$, $Z_{vehicle}$ } plane. Solar arrays are supposed to have degree of freedom around $Y_{vehicle}$. As $Y_{vehicle}$ is perpendicular to the sun direction, the solar arrays can be oriented perpendicularly to the sun direction.

- Context of the study
- Description of the processing maneuver
- Description of the de-tumbling maneuver
- Estimation of consumption during maneuvers
- Application cases to a given architecture
- Conclusion

De-tumbling and processing by blowing Consumption during processing or de-tumbling phases

- Context of the study
- Description of the processing maneuver
- Description of the de-tumbling maneuver
- Estimation of consumption during maneuvers
- Application cases to a given architecture
- Conclusion

De-tumbling and processing by blowing Application case

- Additional propulsive architecture
 - Addition of a balance thruster with same characteristics as phasing thruster
 - For electrical blowing : Addition of 4 low MIB thrusters to control position during the maneuvre

			Balance thrusters			1
Chaser Class	Light vehicle			17		Main Engines
Mass	1500 kg		(1 11	H	Rendezvous Engines
Inertia	1100 kg.m ²			······	1	Electrical Engines
Available					1	Low MIB thrusters
power		[
level	5 kW					
				T		
Target	Medium					
class	(H10 like)					
Mass	2000 kg					
Inertia 2	28000 kg.m ²	Chaser	Main Engine	Electrical	Rendez-vous	Low MIB
		Class		Engine	engine	thrusters
		Light	500 N	0.06 N	22 N	
		Light	lsv = 300s	lsv = 2500s	lsv= 280s	lsv = 3000s
		Venicle			MIB 0.5Ns	MIB 0.004 Ns

All the space you need

29/05/2013 - 14

De-tumbling and processing by blowing Application case

		Processing chemical	De-tumbling chemical
Chaser		Light Vehicle	Light Vehicle
Target mass	kg	2000	2000
Processing duration		65 mn	84 s
Processing and balance thruster	kg	1623	4,12
Theoretical station keeping point	kg	0	0,00
Position control	kg	15	0,33
Misalignment torque compensation	kg	43	0,11
Misalignment force compensation	kg	440	1,13
Total consumption	kg	2121	5,70

- Major contributor is balance & processing thruster
- Processing : Level of magnitude of the consumption ~ mass of the target
 => Limitation of the method to small debris
- De-tumbling : reasonable consumption and duration of the maneuver

All the space you need 29/05/2013 - 15

De-tumbling and processing by blowing Application case

		Processing electrical	De-tumbling electrical
Chaser		Light Vehicle	Light Vehicle
Target mass	kg	2000	2000
Processing duration		166 days	79 hours
Processing and balance thruster	kg	95	0,20
Theoretical station keeping point	kg	0	0,16
Position control	kg	42	0,89
Misalignment torque compensation	kg	2	0,00
Misalignment force compensation	kg	19	0,04
Total consumption	kg	159	1,30

- Main contributors : Processing & balance thrusters / position control
- Propulsive architecture complexity is increased
- Processing :
 - too long duration of the processing maneuvers can discard some configurations mass target/ mass chaser
 - Consumption for the phase ~ 10 to 20% mass of the target
- De-tumbling :
 - Duration and consumption reasonable during those phases

- Context of the study
- Description of the processing maneuver
- Description of the de-tumbling maneuver
- Estimation of consumption during maneuvers
- Application cases to a given architecture
- Conclusion

De-tumbling and processing by blowing Conclusion

- Some GNC attitude strategies allow performing de-tumbling and processing maneuvers with classical or electrical engines
- Adaptation of existing propulsive architectures is mandatory to be able to process or de-tumble with blow effect
- The order of magnitude of additional masses to add to a given architecture has been estimated.
 - The most promising application case for use of blowing effect is de-tumbling with classical or electrical engines.
 - De-tumbling with classical engines seems feasible without any heavy modifications of an architecture already dedicated to rendezvous.
 - De-tumbling with electrical thrusters leads to more complex propulsive architecture.

All the space you need 29/05/2013 - 18