Rotational Testbed for Coulomb Induced Spacecraft Attitude Control

Daan Stevenson
PhD Candidate

Hanspeter Schaub
Associate Professor

5th International Conference on Spacecraft Formation Flying Missions and Technologies
Munich, Germany, May 29-31, 2013
Outline

• Coulomb Charge Control
• Remote Coulomb De-spin
• Electrostatic Modeling
• Experimental Setup
• Modeling Disturbances
• Passive Charging
• Spin-up & De-spin Results
• Conclusion / Questions
Coulomb charge control

- Research effort initiated a decade ago, to charge spacecraft in close proximity for relative position control
- Two 5 m diameter spacecraft separated by 20 m, charged to ±30 kV, exert 2 mN force
- Debye shielding effect
 - inhibits electric fields in LEO but manageable in HEO
- Applications
 - Formation flying (separated spacecraft interferometry)
 - Electrostatic tugs (touchless re-orbiting of debris objects)
Remote Coulomb De-spin

- Charged non-spherical conductors experience torques & off-axis forces
- Remove rotation rate from non-cooperative spacecraft before rendezvous (to < 1 deg/s)
- Motivation: orbital debris removal at GEO
 - Docked satellite tug
 - Satellite servicing missions
Electrostatic Modeling

Multi-Sphere Method (MSM)

- MSM Surface Population
- MSM Volume Population
- Effective Sphere
- Point Charge
- Finite Element Analysis

Accuracy vs Computation Time
Electrostatic Modeling

Multi-Sphere Method (MSM)

$\phi_i = k_c \frac{q_i}{R_i} + \sum_{j=1, j \neq i}^{m} k_c \frac{q_j}{r_{i,j}}$

Accuracy

Computation Time

Spacecraft Formation Flying Missions and Technologies

Munich, Germany, May 29-31, 2013
Electrostatic Modeling

Simple 3x1 cylinder, representative of Centaur upper stage rocket

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{cyl}</td>
<td>182.1</td>
<td>g</td>
<td>Cylinder mass</td>
</tr>
<tr>
<td>I_{cyl}</td>
<td>3.30</td>
<td>g·m²</td>
<td>Moment of inertia</td>
</tr>
<tr>
<td>l</td>
<td>45</td>
<td>cm</td>
<td>Separation</td>
</tr>
<tr>
<td>d</td>
<td>17.353</td>
<td>cm</td>
<td>MSM Parameters</td>
</tr>
<tr>
<td>R_a, R_c</td>
<td>8.8634</td>
<td>cm</td>
<td>MSM Parameters</td>
</tr>
<tr>
<td>R_b</td>
<td>9.7664</td>
<td>cm</td>
<td>MSM Parameters</td>
</tr>
</tbody>
</table>

\[
\begin{bmatrix}
\phi_1 \\
\phi_2 \\
\phi_2 \\
\phi_2
\end{bmatrix} = k_c \begin{bmatrix}
1/R_1 & 1/r_a & 1/r_b & 1/r_c \\
1/r_a & 1/R_2,a & 1/l & 1/2l \\
1/r_b & 1/l & 1/R_2,b & 1/l \\
1/r_c & 1/2l & 1/l & 1/R_2,c
\end{bmatrix} \begin{bmatrix}
q_1 \\
q_a \\
q_b \\
q_c
\end{bmatrix}
\]

\[
M_2 = k_c q_1(d, \theta) l d \sin \theta \left(\frac{q_c(d, \theta)}{r_c^3(d, \theta)} - \frac{q_a(d, \theta)}{r_a^3(d, \theta)} \right)
\]
Experimental Setup

1. Laser distance sensor
2. Custom disc with varying length radius
3. Ceramic bearing
4. DAQ system
5. High voltage power supply

Spacecraft Formation Flying Missions and Technologies

Munich, Germany, May 29-31, 2013
Simulation runs in MATLAB (ode45)

1. Bearing Friction
 \[M_B = \gamma F_a \]

2. Atmospheric Drag
 \[M_D = \frac{\rho \omega^2 C_d D L^4}{64} \]

* Equivalent at: 38 deg/s
Passive charging

1. Modify MSM to capture constant charge, not constant potential

\[
\begin{bmatrix}
\phi_1/k_c \\
0 \\
0 \\
q_2
\end{bmatrix}
=
\begin{bmatrix}
1/R_1 & 1/r_a & 1/r_b & 1/r_c & 0 \\
1/r_a & 1/R_{2,a} & 1/l & 1/2l & -1 \\
1/r_b & 1/l & 1/R_{2,b} & 1/l & -1 \\
1/r_c & 1/2l & 1/l & 1/R_{2,c} & -1 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
q_1 \\
q_a \\
q_b \\
q_c \\
\phi_2/k_c
\end{bmatrix}
\]

2. Characterize charge drain due to interaction with atmospheric environment and bearing mount
 - Low capacitance makes voltage measurement difficult
 - Use surface DC voltmeter measurements
Passive charging

(a) Charge drain, various configurations

- Par., $V_{spk} = 0 \text{ kV}$
- Par., $V_{spk} = -15 \text{ kV}$
- Par., $V_{spk} = +15 \text{ kV}$
- Perp., $V_{spk} = 0 \text{ kV}$
- Perp., $V_{spk} = -15 \text{ kV}$
- Perp., $V_{spk} = +15 \text{ kV}$

(b) Charge drain, curve fit

$V(t) = V_0[0.87 - 0.00041t + 0.127e^{-0.017t}]$
Remote cylinder rotation control by Coulomb charging
Spin up to rate where Coulomb torques balance with disturbances

<table>
<thead>
<tr>
<th>Condition</th>
<th>Spin-up Control Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^\circ + \theta_{DB} < \theta < 90^\circ - \theta_{DB}$</td>
<td>$\phi_1 = -30 \text{ kV}$</td>
</tr>
<tr>
<td>$180^\circ + \theta_{DB} < \theta < 270^\circ - \theta_{DB}$</td>
<td>$\phi_1 = +30 \text{ kV}$</td>
</tr>
<tr>
<td>$90^\circ + \theta_{DB} < \theta < 180^\circ - \theta_{DB}$</td>
<td>$\phi_1 = +30 \text{ kV}$</td>
</tr>
<tr>
<td>$270^\circ + \theta_{DB} < \theta < 360^\circ - \theta_{DB}$</td>
<td>$\phi_1 = -30 \text{ kV}$</td>
</tr>
</tbody>
</table>

(a) Angular velocity

Simulation
Experimental

Spacecraft Formation Flying Missions and Technologies

Munich, Germany, May 29-31, 2013
Spin-up Control Results

Spin up to rate where Coulomb torques balance with disturbances.

\[
\begin{array}{|c|c|c|}
\hline
\text{CCW (}\omega > 0\text{)} & \phi_1 = -30 \text{ kV} & \phi_1 = +30 \text{ kV} \\
\text{CW (}\omega < 0\text{)} & \phi_1 = +30 \text{ kV} & \phi_1 = -30 \text{ kV} \\
\hline
\end{array}
\]

(b) Simulated electric potentials
Spin-up Control Results

Spin up to rate where Coulomb torques balance with disturbances

<table>
<thead>
<tr>
<th>Condition</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCW ($\omega > 0$)</td>
<td>$\phi_1 = -30 \text{ kV}$</td>
</tr>
<tr>
<td>CW ($\omega < 0$)</td>
<td>$\phi_1 = +30 \text{ kV}$</td>
</tr>
</tbody>
</table>

(c) Simulated torques

$M \ [\text{mN.m}]$

Time $[\text{s}]$

Spacecraft Formation Flying Missions and Technologies

Munich, Germany, May 29-31, 2013
De-spin Control Results

- Opposite control to arrest rotation rate of cylinder
- Cylinder rotation arrested 3 times faster than natural de-spin from disturbances
- Verification of remote Coulomb de-spin concept
Conclusion

- Rotational actuation by Coulomb torques verified by terrestrial testbed
- Disturbances successfully characterized and numerical models match experimental results extremely well
- De-spin concept validated for cylindrical conductor
- Hardware limitations identified, improve fidelity in future testbed iterations to allow for more accurate validation of attitude control algorithms
 - Disturbance torques are smaller but same order of magnitude as maximum attainable Coulomb torques
 - Accuracy of rotational encoding (2 Hz noise with 1σ amplitude of 2 deg)
 - Polarity switching lag of HVPS (up to 1 sec) limits torques at high rotation rates
- Ultimate goal is to move experiments to vacuum environment
Acknowledgement
This material is based upon work supported by: NASA Science & Technology Research Fellowship (NASA Grant #NNX11AN47H).