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Abstract: The recently proposed system of satellite swarms is a novel development of 
traditional distributed space systems, which is supposed to exploit swarm intelligence 
and behaviors in nature to outperform other space systems for particular applications. 
However, due to the considerable number of satellites in a swarm, an effective 
maintaining method consuming as little fuel as possible is a challenge. This paper 
explores the application of electromagnetic force in satellite swarms. Firstly, a type of 
satellite swarm consisting of multiple groups is presented. To sustain the swarm, the 
inter-group control is occasionally actuated based on thrusters, while the inner-group 
control is accomplished via electromagnetic force which can be generated without 
onboard fuels. Then, a control method applying artificial potential functions is proposed 
for the inter-group maintaining, which is made up of velocity planning and tracking, and 
based on the information obtained using local sensing and communicating. Moreover, a 
control scheme based on this method is proposed for the inter-group maintaining. 
Finally, the magnetic dipoles to implement the control method are derived via nonlinear 
optimization methods. Simulation results illustrate that using the proposed control 
method, the desired inner-group shape can be formed and maintained successfully, and 
the required magnetic dipoles can be acquired effectively by nonlinear optimization. 
 
Keywords: Satellite Swarms, Electromagnetic Force, Artificial Potential Functions, 
Nonlinear Optimization. 
 
1. Introduction 
 
The concept of satellite swarms has been appearing in literature recently [1-4]. However, 
as most scientific innovations encountered, there haven’t existed a specific and 
acknowledged definition as well as its functionality. On the one hand, a satellite swarm 
can be simply regarded as a multi-satellite system without definite explanations about 
its functionality, composition and operation mode, and used as an alternative to satellite 
cluster or satellite formation [2]. Even so, it is generally employed in the situation that 
the number of satellites is substantial or the control requirements are relaxed [3, 4]. On 
the other hand, a satellite swarm can be defined as an exceptional distributed space 
system, which is inspired by various biological swarms in nature, e.g. bird flocking, 
animal herding, fish school, ant colonies [1]. In [1], the concept is explored from several 
typical properties of a natural swarm (e.g. robustness, redundancy, large area coverage, 
the lack of a hierarchical command structure, limited processing power per unit and self-
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organization). Moreover, the systems engineering problem taking into account its 
distinctiveness is analyzed in [3]. Despite of its immaturity, several projects of satellite 
swarms have been proposed to accomplish the missions for which other systems can’t 
be competent, such as the OLFAR (Orbiting Low Frequency Array), a project aimed to 
develop a detailed system concept for space based very low frequency large aperture 
radio interferometric array [5], and the ANTS (Autonomous Nano-Technology Swarm) 
mission making use of satellite swarms to explore the asteroid belt [6]. 
Although satellite swarms would be promising in space application, there remain some 
challenges to be tackled, such as the effective control method to sustain the swarm 
consisting of considerable satellites. Due to the scale of swarm, the potential control 
method should only depend on information obtained by local sensing and 
communicating, and focus on minimizing the consumed fuel. For the former concern, 
artificial potential functions have been applied comprehensively, which imitate the 
swarm behaviors in nature [2, 4, 11]. And for the latter problem, the device of 
superconducting coils mounted on each satellite to generate electromagnetic force 
could be an excellent choice. This actuator can make the lifetime of system independent 
of the available onboard fuel, and exploit the theoretically inexhaustible solar energy 
instead [7]. Besides, the problem of plume contamination and thermal emission can be 
avoided as well [8]. 
However, the control applying electromagnetic force would make the dynamics of each 
satellite strongly coupled and require the solving of magnetic dipoles [9]. The difficulty 
would intensify as the number of satellites increases, which would be apparent in 
satellite swarms. Therefore, this paper firstly presents the analytical model of 
electromagnetic force and discusses its interacting traits. Based on the analysis, a type 
of satellite swarm suitable for the implementation of electromagnetic force control is 
proposed. The swarm is constructed by referring to the traits of swarm, and can be 
divided into multiple groups. Electromagnetic force is employed to control the inner-
group geometry, whereas the inter-group’s distance is ruled by traditional thrusters to 
compensate for the imperfection of electromagnetic force control. Then the relative 
orbital dynamics for this swarm is established based on the Hill’s equations. Then a 
control method consisting of velocity planning and tracking is presented for the inter-
group maintaining. The part of velocity planning is accomplished using artificial potential 
functions, and the part of velocity tracking is fulfilled by a feedback control algorithm. 
Furthermore, based on this method a control scheme is proposed for the inter-group 
maintaining. Finally, the magnetic dipoles to actuate the superconducting coils are 
calculated via nonlinear optimization methods. 
 
2. Satellite Swarm Exploiting Electromagnetic Force 
 
2.1 Electromagnetic Force Model 
 
In this paper, the far-field model is adopted to formulate the electromagnetic force 
between satellites [9]. As each satellite with superconducting coils is approximated as a 
magnetic dipole in this model, the precision would degrade as the distance between 
satellites reduces and is applicable only when the ratio of inter-satellite distance to 
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radius of superconducting coil exceeds 6~8 [10]. Even so, due to its simplicity the far-
field model is applied extensively, especially in the field of control. 
Using this model, the electromagnetic force exerted on satellite i by satellite j can be 
expressed as follows: 
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where ,i jμ μ  are the magnetic dipoles on satellite i and satellite j respectively. 

22 28 10 A mm    is Earth’s dipole strength. ijR  represents the position vector from 

satellite j to satellite i and ijR  is its 2-norm. 

Therefore, for a system consisting of q satellites with superconducting coils, the total 
electromagnetic force exerted on satellite i can be calculated by 
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For the design of suitable satellite swarm, two significant traits of electromagnetic force 
need to be analyzed. The first one is about the effective range of electromagnetic force. 

As shown in Eq. (1) , m

ijF is proportional to 4

ijR , which makes the electromagnetic 

interaction of two satellites flying with large distance trivial enough to be neglected. For 

instance, if ijR  increases to three times of the original, the force would reduce to 1/81 of 

the original. The second one is that the electromagnetic force is a type of interacting 
field force, which induces the resultant of force exerted on the swarm is null. Thus, the 
control fully dependent on electromagnetic force is invalid for maneuvering of overall 
swarm which may be essential in application. 
 
2.2. Satellite Swarm Design 
 
In this part, we conceive a type of satellite swarm applying electromagnetic force, which 
is based on the discussion in Section 2.1 and several traits of satellite swarm which is 
mentioned in the following description. 
The swarm is supposed to be divided into multiple groups, and every group contains 
multiple satellites. The number of group can be determined according to the 
requirement of mission and may be as many as tens or hundreds. In contrast, the 
number of satellites in one group shouldn’t exceed ten. Moreover, the distances 
between satellites belonged to one group are set to be at least three times less than 
that belonged to two distinct groups. For this swarm, the redundancy is represented by 
multitude groups, namely, some or all the groups can be designed identical to enhance 
the system’s robustness as none of the groups is essential for the functionality [1]. The 
constraints on the scale of each group and the distinction of distances are contributed to 
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reduce the degree of dynamics coupling to facilitate the application of electromagnetic 
force. In other words, only the satellites with superconducting coils in the same group 
are taken into account when evaluating the electromagnetic force exerted on any 
satellite. 
In terms of maintaining the swarm, two types of control are required. The first one is 
called as inner-group control, and it is aimed to sustain the geometry formed by all the 
satellites in an identical group, e.g. a triangle formed by three satellites or a tetrahedron 
formed by four satellites. As generally hold for satellite swarm, the requirement for the 
precision of geometry sustaining can be relaxed [2]. The second one is called as inter-
group control, and its major function is to confine the two adjacent groups within a 
predefined maximum range as well as to guarantee the distinction of distances 
presented above. It can be deduced that the inter-group control may be inessential for a 
relative short duration provided that the initial states of satellites are satisfying. 
To implement the two control task, two kinds of actuators are employed accordingly. 
The inner-group control is dependent on the superconducting coils amounted on each 
satellite in the swarm to generate electromagnetic force to control the satellite’s relative 
motion. The inter-group control is propulsion based, but only one satellite among each 
group is equipped with thrusters for it. Therefore, the inner-group control would benefit 
from the fuel dependent trait of electromagnetic force especially when the control is 
required to be continuous, which is the situation of this paper. And the inter-group 
control wouldn’t consume too much fuel as it may be triggered occasionally. The major 
reason to use thrusters instead of fully electromagnetic actuating is that the latter can’t 
be capable of the control of the swarm’s entire motion. 
The ability of local sensing and communicating is a significant trait of swarm. For this 
satellite swarm, each satellite has the identical sensing and communicating ability, 
moreover, the sensing ability and the communicating ability are indiscriminate, which 
means they can cover the same area. To meet the control requirement presented above, 
the sensing and communicating range should cover the maximum range defined for 
inter-group control. In fact, the satellites without thrusters unnecessarily sense or 
communicate in this far distance. 
The following research on dynamics and control is based on this satellite swarm. For 
the convenience of description, the satellites responsible for inter-group control are 
denoted as guide satellites, and the remaining satellites are called as member satellites. 
l  is denoted as the number of groups in a swarm, and q  is denoted as the number of 

satellites belonged to an identical group. The guide satellite of group  1~k k l is 

designated as 1

kS , and the member satellites can be designated as , 2 ~k

jS j q . Figure 

1 illustrates the structure of the proposed satellite swarm. 
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Figure 1.  The Proposed Satellite Swarm 

 
3 Relative Orbital Dynamics 
 
The orbital dynamics of each satellite is established based on the classic Hill’s 
equations which are effective when the distance from the satellite to its reference 
satellite is small enough and the reference satellite moves along an ideal circular orbit. 
As a satellite swarm may consists of tens or hundreds of satellites, its space distribution 
would be rather broad, which makes the accuracy of the Hill’s equations degraded. 
Hence, this paper employs varied reference satellites for distinct groups of the swarm, 
and a virtual satellite located near the center of group would be an excellent choice. 
The reference frame in which the orbital dynamics is expressed is defined as follows: 
the origin is located at the mass center of the reference satellite; the x axis is along the 
vector that points from the center of Earth to the reference satellite; the z axis points 
towards the orbital plane normal; the y axis completes the right hand system. Therefore, 

the orbital dynamics of k

iS  can be written as: 
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where n  is the angular velocity of the reference satellite defined for group k, ix  

represents the position vector of k

iS , iu  is the control acceleration exerted on k

iS , and id  

represents the disturbance acceleration, including the influence by various types of 
perturbations and the model error of the Hill’s equations. 
However, due to the interaction of electromagnetic force, the orbital dynamics of all the 
satellites in group k are coupling [7]. Thus, the control design in the following section 
would violate the coupling relationship if Eq. (3) is used directly.  
To avoid this problem, the orbital dynamics of each member satellite is subtracted by 
that of their guide satellite mathematically, which derives the following model: 
 

 1 1 1 2 1 1 1 2 ~i i i i i i qx = A x + A x + u + d  (4) 
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where 1 1 1 1 1 1, ,i i i i i i     x x x u u u d d d . Therefore, instead of deriving the control 

acceleration of each satellite belonged to the identical group directly, 1iu  is obtained 

using the control method in Section 4. Then by combining the coupling equation 

introduced in Section 5, the reasonable iu  for each satellite can be determined. 

 
4. Control Strategy Based on Artificial Potential Functions 
 
In this section, a control method is proposed for the inner-group geometry forming and 
maintaining. The method can be divided into two parts: velocity planning and tracking. 
The former can generate the desired velocity of each satellite according to its actual 
position with respect to other satellites in the same group. The latter gives the required 
acceleration to track the planned velocity (The tracking algorithm also requires the 
actual velocity of each satellite with respect to other satellites in the same group). In 
addition, an inter-group control scheme is proposed via an extension of the above 
method. 
 
4.1 Velocity Planning 
 
The process of velocity planning is accomplished by using one type of artificial potential 
functions which is enlightened by the intuitive behaviors of natural creatures in a swarm. 
Specifically, for two satellites, the function simulates the behavior of approaching when 
their distance is large and the behavior of separating when the distance is small. The 
function has been widely used to achieve swarm aggregation [1-2], which can be written 
as follows: 
 

   exp
T

a b
c

  
     

  

y y
g y y  (5) 

 

where , ,a b c  are positive real numbers, and y  is a vector variable to determine 

behaviors. In terms of satellite swarms, y  can be the relative position with respect to 

other satellites or particular flags of surroundings. 
It can be seen that if one satellite is actuated by the velocity defined as Eq. (5), the 

satellite would arrive at the equilibrium of   g y 0  which can be calculated by the 

following equation: 
 

 ln
c

eq

b
d

a
  (6) 

 
As discussed in Section 2, Eq. (4) is applied for electromagnetic force control. Thus, for 
a group with q  satellites, only 1q   relative velocities can be planned. Using the artificial 
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potential function presented by Eq. (5), the desired velocity field assigned to group k is 
formulated by 
 

    1 1
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According to the above discussion on  g y , it is evident that  ij ijg x  is used to drive 

and keep the distance between kO

iS  and kO

jS  to a design value determined by ija , ijb  

and ijc , and  i ig x  is to maintain the distance between kO

iS  and kO  determined by ia , 

ib  and ic . Therefore, the set of 1iv  can instruct all the satellites inside group k to behave 

concurrently to arrive at an equilibrium of the group. And the inner-group control 
objective of geometry forming and keeping can be achieved by planning an appropriate 
equilibrium in advance. 
Although the velocity field presented by Eq. (7) is biological swarm inspired, and has 
distinct physical explanation, some essential mathematical analysis should be 
complemented to confirm the reliability and applicability of the method. To this end, the 
following Lyapunov function is constructed: 
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Therefore, the gradient of  J x  with respect to each 1, 2 ~k k qx  is given as follows: 
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It is apparent that  ij ijg x  and  ji jig x  are used for the same purpose. Thus, one 

intuitive choice of their parameters complies with the following equations: 
 

 ij ji ij ji ij jia a b b c c    (12) 

 

For this choice, we can derive the following result from Eq. (11): 
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Hence, the time derivative of the Lyapunov function along the desired velocity field can 
be expressed as: 
 

    
1
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q q
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Then, Using the LaSalle’s Invariance Principle, we can deduce that as t   the 

variable x  converges to the largest invariant subset of the set defined as: 

 

     | 0 | 0J   x x x x  (15) 

 
However, we can’t guarantee that the largest invariant subset of   only comprises the 
equilibrium defined by Eq. (6). There may exist several local minima that make the 
ultimately formed geometry isn’t unique [12]. Although the problem can be resolved by 
selecting proper parameters, the sophisticated methods to determine them one time 
have not been presented as far as we know. One alternative to escape a local minimum 
is to change the original parameters when the satellite evaluates its desired velocity to 
be zero [13]. 
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In this paper, we attempt to reduce the probability of occurrence of falling into local 
minima via exploiting the diversity and randomicity of parameters. As any local minimum 
only appears when all the satellites’ positions and parameters satisfy certain equations 

( 1 , 2 ~k k q v 0 ), we can anticipate that the problem is almost impossible to be 

encountered during the process of geometry forming for random initial positions and 
random parameters. Specifically, the method comprises two steps: 1) According to the 
desired shape, each member satellite decides its desired distances with respect to other 
satellites and generates its own parameters randomly using the onboard computer 
program; 2) any two member satellites communicate with each other to negotiate a 

consistent result on their related parameters (e.g. ija  and jia ) to meet Eq. (12). 

 
4.2 Velocity Tracking 
 
In order to track the velocities defined by Eq. (7), the following feedback control 
algorithm is applied [2]: 
 

    1 1 1 1 1 1 2 1 2 ~i i i i i i i i q    u K v x a A x + A x  (16) 

 

where iK  is a constant vector, 1ix  and 1ix  are the measured positions and velocities 

respectively, 1iv  and 1ia  are their planned counterparts. 1ia  can be derived by 

differentiating 1iv , which is expressed as 
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4.3 Inter-group control scheme 
 
Although the control method in this section only illustrates its applicability for inner-
group geometry forming and maintaining, the inter-group control can inherit it 
conveniently. Therefore, we propose the following control scheme. 
To apply this scheme, two trigger ranges are defined for each guide satellite. The 

smaller one denoted as minRA  should exceed the satellite’s inter-group control minimal 
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allowed range denoted as dRA . The larger one denoted as maxRA  should be confined 

inside the satellite’s inter-group control maximal allowed range denoted as scRA . The 

thrusters on one guide satellite fire only when other guide satellites intrude into minRA  or 

escape maxRA . And the maneuvering acceleration is determined according to a 

procedure of velocity planning and tracking alike that for inner-group control. The 

desired distance eqd  is supposed to be a value close to the middle of minRA  and maxRA . 

Figure 2 demonstrates the above control scheme for inter-group maintaining. 
 

 
Figure 2.  The Inter-group Control Scheme 

 
It is manifest that the inter-group control is actuated occasionally. Whereas, to minimize 
the fuel consumption as much as possible, further study should be carried out for the 
design of guide satellites’ initial positions, the definition of trigger ranges and the 
selecting of parameters in artificial potential functions. 
 
5. Derivation of Magnetic Dipoles 
 
The control method for inner-group in Section 4 can only give the desired acceleration. 
In terms of electromagnetic force control, we need to obtain the appropriate magnetic 
dipoles to actuate the superconducting coils to generate the desired acceleration. 
Assuming that the mass of each satellite is identical and denoted by m, the following 
equations hold: 
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where iF  is the electromagnetic force exerted on satellite k

iS . 
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Equation (19) is equivalent to the following expression: 
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Although there are 3q  scalar equations in Eq. (20), we can only use 3 3q   equations 

from them to derive the magnetic dipoles as they are dependent. In this paper, the 
following equations are chosen as constraints of magnetic dipoles solving: 
 

  1 2 1 1

2

, , , 2, ,
q

i q i j

j

m
q i q

q 

 
   

 
F μ μ μ u u  (21) 

 
It is evident that Eq. (21) has 3q  unknown variables, which makes the solution 

satisfying the acceleration requirement not unique. Thus, we attempt to exploit the 
diversity of solution to derive an optimal solution for a predefined cost function which is 
defined as follows: 
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q
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where kt  and 1kt   represent two successive solving time, miW  and diW  are both diagonal 

weighting matrices. The first term in Eq. (22) is to minimize the magnitude of all the 
magnetic dipoles and average the magnitude of each one, and the second term is to 
avoid unnecessary switching of the dipoles. 
In this paper, we use the optimization toolkit in Matlab to solve the nonlinear 
optimization problem defined by Eq. (21) and Eq. (22). Although it may seem to require 

much computing, the solution should be continuous and once the solution in 1kt   is 

found, the solution in kt  is very close to this solution. Hence, setting the initial guess at 

each time step with the previously computed solution would result in a very rapid 
convergence to the desired solution. 
 
6. Numerical Results 
 
In this section the performance of the proposed inner-group control method and 
magnetic dipoles solving algorithm is examined by the geometry forming and 
maintaining for a specific satellite swarm described as Section 2. 
The satellite swarm is made up of three groups, and each group consists of four 
satellites which are expected to form and maintain the geometry of regular tetrahedron 
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with side length 15 m. The initial deployment of the swarm makes it possible to select 
three virtual reference satellites flying along an identical circular orbit with various true 
anomalies. The orbit altitude is 500 km, and the distance of two adjacent reference 
satellites is 1 km. The initial position of each satellite in its respective reference frame is 
given in Tab. 1. 
 

Table 1.  Initial Position of Each Satellite 

 
Satellite 1’s 
position (m) 

Satellite 2’s 
position (m) 

Satellite 3’s 
position (m) 

Satellite 4’s 
position (m) 

Group 1 -10, 0, 0 10, 10, 0 -5, 15, 0 0, -5, 15 

Group 2 10, 0, 3 10, -10, -1 5, 15, 0 0, 5, -10 

Group 3 5, 0, 0 15, -10, 0 8, -7, 0 0, 5, -10 

 
The parameters of each artificial potential function for the swarm’s velocity planning are 

identical without violation of Eq. (6), namely, 10.01ij ia a e   , 0.01ij ib b  , 215ij ic c  . 

Meanwhile,  diag 0.01,0.01,0.01i K  is chosen for the velocity tracking of each member 

satellite. 
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Figure 3. Trajectories of Group 1 for 
Geometry Forming and Maintaining 
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Figure 4. Trajectories of Group 2 for 
Geometry Forming and Maintaining 
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Figure 5. Trajectories of Group 3 for 
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Geometry Forming and Maintaining Distances of Each Group 
 
To solve the magnetic dipoles, the mass of each satellite is identical with the value of 

300 kg. Every diagonal element of miW  is set to be 1, and that is 50 for diW . 

The trajectories of geometry forming and maintaining for each group are depicted in 
Figs. 3~5 with the initial positions marked by squares and the terminal positions marked 
by asterisks, and the varying of inter-satellite distances of each group is illustrated in Fig. 
6. It can be seen that by using the proposed control method consisting of velocity 
planning and velocity tracking, the satellites in each group can be actuated to form the 
desired geometry of regular tetrahedron from the initial positions respectively, and the 
maximum deviation during the phase of geometry maintaining is below 0.3 m. 
While the inter-group control based on thrusters are not actuated due to the relaxed 
initial positions for simulation, Table. 2 gives the initial and terminal centers of mass of 
each group to show some phenomenon. It can be seen that although the 
electromagnetic force can’t shift the center of mass of any group, none of the three 
groups can preserve their initial values due to Earth’s gravitation. And for various initial 
deployments, the drifts are markedly diverse. Hence, further research should be 
focused on the initialization of each group to facilitate the natural maintaining of inter-
group distances to avoid the unwelcome inter-group control as far as possible. 
 

Table 2.  Initial and Terminal Centers of Mass of Each Group 

 Initial position (m) Terminal position (m) 

Group 1 -1.25, 5, 3.75 9.06, -29.742, -6.03 

Group 2 6.25, 2.5, -2 36.20, -102.34, 6.21 

Group 3 7, -3, -2.5 52.45, -162.72, 5.22 

 
The required magnetic dipoles to implement the above inner-group control are shown in 
Fig. 7~9. It can be seen that the magnitudes of all the magnetic dipoles are restricted 

below 5 25 10 A m , and the magnetic dipoles vary smoothly over time without significant 

switch of vector direction. 
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Figure 7. Time histories of the magnetic 

dipoles in Group 1 

0 500 1000 1500 2000 2500 3000
-1

-0.5

0

0.5

1

1.5

2
x 10

5

t (s)


 (

A
 m

2
)

 

 

S
1

S
2

S
3

S
4

 
Figure 8. Time histories of the magnetic 

dipoles in Group 2 
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Figure 9. Time histories of the magnetic dipoles in Group 3 

 
7. Conclusions 
 
As one of the diverse solutions to the reduction of fuel consumption for the maintaining 
of satellite swarms, the electromagnetic force based control method is proposed. Firstly, 
a specific satellite swarm structure is designed as well as its control requirement to 
facilitate the control implementation applying electromagnetic force by decreasing the 
degree of dynamic coupling. Then a control strategy synthesizing the thrusters for inter-
group control and the superconducting coils for inner-group control is presented. The 
inner-group control algorithm is composed of velocity planning, which is inspired by 
natural swarm behaviors and constructed by artificial potential functions, and velocity 
tracking consisting of Hill’s equations based feedforward and feedback tracking. The 
inter-group control is designed to be actuated by two predefined trigger ranges and 
employ the algorithm similar to that for inner-group control. Finally, nonlinear 
optimization methods are used to derive the desired magnetic dipoles. The feasibility 
and effectiveness of the proposed inner-group control method and magnetic dipoles 
solving method are verified by simulation. Further research should be conducted on the 
determination of trigger ranges, the initial deployment and the parameter optimization of 
the artificial potential functions. 
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